Metamath Proof Explorer


Theorem dalawlem4

Description: Lemma for dalaw . Second piece of dalawlem5 . (Contributed by NM, 4-Oct-2012)

Ref Expression
Hypotheses dalawlem.l = ( le ‘ 𝐾 )
dalawlem.j = ( join ‘ 𝐾 )
dalawlem.m = ( meet ‘ 𝐾 )
dalawlem.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion dalawlem4 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) 𝑄 ) 𝑇 ) ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 dalawlem.l = ( le ‘ 𝐾 )
2 dalawlem.j = ( join ‘ 𝐾 )
3 dalawlem.m = ( meet ‘ 𝐾 )
4 dalawlem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 simp11 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝐾 ∈ HL )
6 simp12 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) )
7 5 hllatd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝐾 ∈ Lat )
8 simp22 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑄𝐴 )
9 simp32 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑇𝐴 )
10 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
11 10 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴 ) → ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
12 5 8 9 11 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
13 simp21 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑃𝐴 )
14 simp31 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑆𝐴 )
15 10 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴 ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
16 5 13 14 15 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
17 10 3 latmcom ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) = ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) )
18 7 12 16 17 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) = ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) )
19 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑃𝐴 ) → ( 𝑄 𝑃 ) = ( 𝑃 𝑄 ) )
20 5 8 13 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑄 𝑃 ) = ( 𝑃 𝑄 ) )
21 6 18 20 3brtr4d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑄 𝑃 ) )
22 simp13 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) )
23 18 22 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑅 𝑈 ) )
24 simp23 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑅𝐴 )
25 simp33 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑈𝐴 )
26 1 2 3 4 dalawlem3 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑄 𝑃 ) ∧ ( ( 𝑄 𝑇 ) ( 𝑃 𝑆 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑄𝐴𝑃𝐴𝑅𝐴 ) ∧ ( 𝑇𝐴𝑆𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) 𝑄 ) 𝑇 ) ( ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) ) )
27 5 21 23 8 13 24 9 14 25 26 syl333anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) 𝑄 ) 𝑇 ) ( ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) ) )
28 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴 ) → ( 𝑃 𝑅 ) = ( 𝑅 𝑃 ) )
29 5 13 24 28 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑃 𝑅 ) = ( 𝑅 𝑃 ) )
30 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑆𝐴𝑈𝐴 ) → ( 𝑆 𝑈 ) = ( 𝑈 𝑆 ) )
31 5 14 25 30 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑆 𝑈 ) = ( 𝑈 𝑆 ) )
32 29 31 oveq12d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) = ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) )
33 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑄𝐴 ) → ( 𝑅 𝑄 ) = ( 𝑄 𝑅 ) )
34 5 24 8 33 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑅 𝑄 ) = ( 𝑄 𝑅 ) )
35 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑈𝐴𝑇𝐴 ) → ( 𝑈 𝑇 ) = ( 𝑇 𝑈 ) )
36 5 25 9 35 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑈 𝑇 ) = ( 𝑇 𝑈 ) )
37 34 36 oveq12d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) )
38 32 37 oveq12d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) ) = ( ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ) )
39 10 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴 ) → ( 𝑅 𝑃 ) ∈ ( Base ‘ 𝐾 ) )
40 5 24 13 39 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑅 𝑃 ) ∈ ( Base ‘ 𝐾 ) )
41 10 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴 ) → ( 𝑈 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
42 5 25 14 41 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑈 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
43 10 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑅 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) )
44 7 40 42 43 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) )
45 10 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
46 5 8 24 45 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
47 10 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴 ) → ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
48 5 9 25 47 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
49 10 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) )
50 7 46 48 49 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) )
51 10 2 latjcom ( ( 𝐾 ∈ Lat ∧ ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ) = ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )
52 7 44 50 51 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ) = ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )
53 38 52 eqtrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑅 ) ( 𝑆 𝑈 ) ) ( ( 𝑅 𝑄 ) ( 𝑈 𝑇 ) ) ) = ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )
54 27 53 breqtrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑃 𝑄 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) 𝑄 ) 𝑇 ) ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )