| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dalawlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
dalawlem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
dalawlem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 6 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
| 7 |
6
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 8 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
| 9 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
| 10 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
6 8 9 10
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑇 ∈ 𝐴 ) |
| 13 |
5 4
|
atbase |
⊢ ( 𝑇 ∈ 𝐴 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
7 11 14 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑆 ∈ 𝐴 ) |
| 18 |
5 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
7 16 19 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
| 23 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
6 9 22 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 25 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑈 ∈ 𝐴 ) |
| 26 |
5 4
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
7 24 27 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 30 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 31 |
6 22 8 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
6 25 17 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 34 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 35 |
7 31 33 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 36 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 37 |
7 29 35 36
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 38 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 39 |
6 12 25 38
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 40 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 41 |
7 24 39 40
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 42 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 43 |
7 41 35 42
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 44 |
5 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 45 |
8 44
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 46 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 47 |
6 8 17 46
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 48 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 49 |
6 9 12 48
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 50 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 51 |
7 24 49 50
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 52 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 53 |
7 47 51 52
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 54 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 55 |
7 45 53 54
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 56 |
5 4
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 57 |
22 56
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 58 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 59 |
7 57 29 58
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 60 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 61 |
7 45 59 60
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 62 |
5 1 2 3
|
latmlej22 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ 𝑆 ) ) |
| 63 |
7 19 16 45 62
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ 𝑆 ) ) |
| 64 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 65 |
7 49 47 64
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 66 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 67 |
7 45 65 66
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 68 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 69 |
7 45 51 68
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 70 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → 𝑆 ≤ ( 𝑃 ∨ 𝑆 ) ) |
| 71 |
6 8 17 70
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑆 ≤ ( 𝑃 ∨ 𝑆 ) ) |
| 72 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 73 |
7 45 49 72
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 74 |
5 1 3
|
latmlem2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑆 ≤ ( 𝑃 ∨ 𝑆 ) → ( ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑆 ) ≤ ( ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ) |
| 75 |
7 19 47 73 74
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑆 ≤ ( 𝑃 ∨ 𝑆 ) → ( ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑆 ) ≤ ( ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ) |
| 76 |
71 75
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑆 ) ≤ ( ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) |
| 77 |
2 4
|
hlatjass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) = ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ) |
| 78 |
6 8 9 12 77
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) = ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ) |
| 79 |
78
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) = ( ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑆 ) ) |
| 80 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) |
| 81 |
6 8 17 80
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) |
| 82 |
5 1 2 3 4
|
atmod1i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) → ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) = ( ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) |
| 83 |
6 8 49 47 81 82
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) = ( ( 𝑃 ∨ ( 𝑄 ∨ 𝑇 ) ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) |
| 84 |
76 79 83
|
3brtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ) |
| 85 |
5 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) |
| 86 |
7 49 47 85
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) = ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) |
| 87 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ) |
| 88 |
86 87
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ) |
| 89 |
5 1 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑇 ) ) |
| 90 |
7 49 47 89
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑇 ) ) |
| 91 |
5 1 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑇 ) ) ↔ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) |
| 92 |
7 65 24 49 91
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( 𝑄 ∨ 𝑇 ) ) ↔ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) |
| 93 |
88 90 92
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) |
| 94 |
5 1 2
|
latjlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) → ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ≤ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ) |
| 95 |
7 65 51 45 94
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) → ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ≤ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ) |
| 96 |
93 95
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ≤ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) |
| 97 |
5 1 7 21 67 69 84 96
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) |
| 98 |
5 1 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ 𝑆 ) ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ↔ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ) ) |
| 99 |
7 21 47 69 98
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ 𝑆 ) ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ↔ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ) ) |
| 100 |
63 97 99
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ) |
| 101 |
5 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) = ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ) |
| 102 |
6 8 47 51 81 101
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) = ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ) |
| 103 |
100 102
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ) |
| 104 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) |
| 105 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 106 |
7 47 49 105
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 107 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 108 |
6 22 25 107
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑅 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 109 |
5 1 3
|
latmlem2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑅 ∨ 𝑈 ) ) ) ) |
| 110 |
7 106 108 24 109
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑅 ∨ 𝑈 ) ) ) ) |
| 111 |
104 110
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑅 ∨ 𝑈 ) ) ) |
| 112 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 113 |
6 112
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝐾 ∈ OL ) |
| 114 |
5 3
|
latm12 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) = ( ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) |
| 115 |
113 47 24 49 114
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) = ( ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) |
| 116 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → 𝑅 ≤ ( 𝑄 ∨ 𝑅 ) ) |
| 117 |
6 9 22 116
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑅 ≤ ( 𝑄 ∨ 𝑅 ) ) |
| 118 |
5 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑅 ∈ 𝐴 ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) = ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑅 ∨ 𝑈 ) ) ) |
| 119 |
6 22 24 27 117 118
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) = ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑅 ∨ 𝑈 ) ) ) |
| 120 |
111 115 119
|
3brtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ≤ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ) |
| 121 |
5 1 2
|
latjlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ≤ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ≤ ( 𝑃 ∨ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ) ) ) |
| 122 |
7 53 59 45 121
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ≤ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ≤ ( 𝑃 ∨ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ) ) ) |
| 123 |
120 122
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) ) ≤ ( 𝑃 ∨ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ) ) |
| 124 |
5 1 7 21 55 61 103 123
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑃 ∨ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ) ) |
| 125 |
5 2
|
latj13 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑃 ∨ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ) = ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ) |
| 126 |
7 45 57 29 125
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ ( 𝑅 ∨ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ) ) = ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ) |
| 127 |
124 126
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ) |
| 128 |
5 1 2 3
|
latmlej22 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑈 ∨ 𝑆 ) ) |
| 129 |
7 19 16 27 128
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑈 ∨ 𝑆 ) ) |
| 130 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 131 |
7 29 31 130
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 132 |
5 1 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑈 ∨ 𝑆 ) ) ↔ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |
| 133 |
7 21 131 33 132
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( 𝑈 ∨ 𝑆 ) ) ↔ ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |
| 134 |
127 129 133
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) |
| 135 |
5 1 2 3
|
latmlej21 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ≤ ( 𝑈 ∨ 𝑆 ) ) |
| 136 |
7 27 24 19 135
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ≤ ( 𝑈 ∨ 𝑆 ) ) |
| 137 |
5 1 2 3 4
|
atmod1i1m |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ≤ ( 𝑈 ∨ 𝑆 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) = ( ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) |
| 138 |
6 25 24 31 33 136 137
|
syl231anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) = ( ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) |
| 139 |
134 138
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |
| 140 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ≤ ( 𝑇 ∨ 𝑈 ) ) |
| 141 |
6 12 25 140
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑈 ≤ ( 𝑇 ∨ 𝑈 ) ) |
| 142 |
5 1 3
|
latmlem2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑈 ≤ ( 𝑇 ∨ 𝑈 ) → ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ) ) |
| 143 |
7 27 39 24 142
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑈 ≤ ( 𝑇 ∨ 𝑈 ) → ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ) ) |
| 144 |
141 143
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ) |
| 145 |
5 1 2
|
latjlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) ) |
| 146 |
7 29 41 35 145
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) ) |
| 147 |
144 146
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ 𝑈 ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |
| 148 |
5 1 7 21 37 43 139 147
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑇 ) ∧ 𝑆 ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |