| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalawlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
dalawlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
dalawlem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
dalawlem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 6 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
| 7 |
6
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 8 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
| 9 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
| 10 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
6 8 9 10
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑆 ∈ 𝐴 ) |
| 13 |
5 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
7 11 14 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑇 ∈ 𝐴 ) |
| 18 |
5 4
|
atbase |
⊢ ( 𝑇 ∈ 𝐴 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ∧ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
7 16 19 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ∧ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
| 23 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
6 9 22 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 25 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑈 ∈ 𝐴 ) |
| 26 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
6 17 25 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
7 24 27 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 30 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 31 |
6 22 8 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
6 25 12 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 34 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 35 |
7 31 33 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 36 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 37 |
7 29 35 36
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 38 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 39 |
6 38
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝐾 ∈ OL ) |
| 40 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 41 |
6 8 12 40
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 42 |
5 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 43 |
9 42
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 44 |
5 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 45 |
7 41 43 44
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
| 46 |
5 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 47 |
6 9 17 46
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
| 48 |
5 3
|
latmassOLD |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑇 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( ( 𝑄 ∨ 𝑇 ) ∧ 𝑇 ) ) ) |
| 49 |
39 45 47 19 48
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑇 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( ( 𝑄 ∨ 𝑇 ) ∧ 𝑇 ) ) ) |
| 50 |
2 4
|
hlatj32 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) |
| 51 |
6 8 12 9 50
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ) |
| 52 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → 𝑇 ≤ ( 𝑄 ∨ 𝑇 ) ) |
| 53 |
6 9 17 52
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑇 ≤ ( 𝑄 ∨ 𝑇 ) ) |
| 54 |
5 1 3
|
latleeqm2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑇 ≤ ( 𝑄 ∨ 𝑇 ) ↔ ( ( 𝑄 ∨ 𝑇 ) ∧ 𝑇 ) = 𝑇 ) ) |
| 55 |
7 19 47 54
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑇 ≤ ( 𝑄 ∨ 𝑇 ) ↔ ( ( 𝑄 ∨ 𝑇 ) ∧ 𝑇 ) = 𝑇 ) ) |
| 56 |
53 55
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑇 ) ∧ 𝑇 ) = 𝑇 ) |
| 57 |
51 56
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( ( 𝑄 ∨ 𝑇 ) ∧ 𝑇 ) ) = ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ∧ 𝑇 ) ) |
| 58 |
49 57
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ∧ 𝑇 ) = ( ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑇 ) ) |
| 59 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ) |
| 60 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 61 |
7 41 47 60
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 62 |
5 1 2
|
latjlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∨ 𝑄 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑄 ) ) ) |
| 63 |
7 61 24 43 62
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∨ 𝑄 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑄 ) ) ) |
| 64 |
59 63
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∨ 𝑄 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑄 ) ) |
| 65 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑇 ) ) |
| 66 |
6 9 17 65
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑄 ≤ ( 𝑄 ∨ 𝑇 ) ) |
| 67 |
5 1 2 3 4
|
atmod4i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑄 ≤ ( 𝑄 ∨ 𝑇 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∨ 𝑄 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) |
| 68 |
6 9 41 47 66 67
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∨ 𝑄 ) = ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ) |
| 69 |
2 4
|
hlatj32 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑄 ) = ( ( 𝑄 ∨ 𝑄 ) ∨ 𝑅 ) ) |
| 70 |
6 9 22 9 69
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑄 ) = ( ( 𝑄 ∨ 𝑄 ) ∨ 𝑅 ) ) |
| 71 |
5 2
|
latjidm |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
| 72 |
7 43 71
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
| 73 |
72
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑄 ) ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 74 |
70 73
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑄 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 75 |
64 68 74
|
3brtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ) |
| 76 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → 𝑇 ≤ ( 𝑇 ∨ 𝑈 ) ) |
| 77 |
6 17 25 76
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → 𝑇 ≤ ( 𝑇 ∨ 𝑈 ) ) |
| 78 |
5 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 79 |
7 45 47 78
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 80 |
5 1 3
|
latmlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ 𝑇 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑇 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ) ) |
| 81 |
7 79 24 19 27 80
|
syl122anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ 𝑇 ≤ ( 𝑇 ∨ 𝑈 ) ) → ( ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑇 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ) ) |
| 82 |
75 77 81
|
mp2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( ( 𝑃 ∨ 𝑆 ) ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ∧ 𝑇 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ) |
| 83 |
58 82
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ∧ 𝑇 ) ≤ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ) |
| 84 |
5 1 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |
| 85 |
7 29 35 84
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |
| 86 |
5 1 7 21 29 37 83 85
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑄 ∨ 𝑇 ) ) ≤ ( 𝑅 ∨ 𝑈 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑆 ) ∧ 𝑇 ) ≤ ( ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ∨ ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) ) ) |