Metamath Proof Explorer


Theorem dalawlem7

Description: Lemma for dalaw . Second piece of dalawlem8 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses dalawlem.l = ( le ‘ 𝐾 )
dalawlem.j = ( join ‘ 𝐾 )
dalawlem.m = ( meet ‘ 𝐾 )
dalawlem.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion dalawlem7 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑄 ) 𝑆 ) 𝑇 ) ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 dalawlem.l = ( le ‘ 𝐾 )
2 dalawlem.j = ( join ‘ 𝐾 )
3 dalawlem.m = ( meet ‘ 𝐾 )
4 dalawlem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
6 simp11 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝐾 ∈ HL )
7 6 hllatd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝐾 ∈ Lat )
8 simp21 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑃𝐴 )
9 simp22 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑄𝐴 )
10 5 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
11 6 8 9 10 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
12 simp31 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑆𝐴 )
13 5 4 atbase ( 𝑆𝐴𝑆 ∈ ( Base ‘ 𝐾 ) )
14 12 13 syl ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) )
15 5 2 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
16 7 11 14 15 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑄 ) 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
17 simp32 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑇𝐴 )
18 5 4 atbase ( 𝑇𝐴𝑇 ∈ ( Base ‘ 𝐾 ) )
19 17 18 syl ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑇 ∈ ( Base ‘ 𝐾 ) )
20 5 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 𝑄 ) 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑃 𝑄 ) 𝑆 ) 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
21 7 16 19 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑄 ) 𝑆 ) 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
22 simp23 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑅𝐴 )
23 5 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
24 6 9 22 23 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
25 simp33 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑈𝐴 )
26 5 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴 ) → ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
27 6 17 25 26 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
28 5 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) )
29 7 24 27 28 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) )
30 5 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴 ) → ( 𝑅 𝑃 ) ∈ ( Base ‘ 𝐾 ) )
31 6 22 8 30 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑅 𝑃 ) ∈ ( Base ‘ 𝐾 ) )
32 5 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴 ) → ( 𝑈 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
33 6 25 12 32 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑈 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
34 5 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑅 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑈 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) )
35 7 31 33 34 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) )
36 5 2 latjcl ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) )
37 7 29 35 36 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) ∈ ( Base ‘ 𝐾 ) )
38 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
39 6 38 syl ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝐾 ∈ OL )
40 5 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴 ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
41 6 8 12 40 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
42 5 4 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
43 9 42 syl ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
44 5 2 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑆 ) 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
45 7 41 43 44 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑆 ) 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
46 5 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴 ) → ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
47 6 9 17 46 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
48 5 3 latmassOLD ( ( 𝐾 ∈ OL ∧ ( ( ( 𝑃 𝑆 ) 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) 𝑇 ) = ( ( ( 𝑃 𝑆 ) 𝑄 ) ( ( 𝑄 𝑇 ) 𝑇 ) ) )
49 39 45 47 19 48 syl13anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) 𝑇 ) = ( ( ( 𝑃 𝑆 ) 𝑄 ) ( ( 𝑄 𝑇 ) 𝑇 ) ) )
50 2 4 hlatj32 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑆𝐴𝑄𝐴 ) ) → ( ( 𝑃 𝑆 ) 𝑄 ) = ( ( 𝑃 𝑄 ) 𝑆 ) )
51 6 8 12 9 50 syl13anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑆 ) 𝑄 ) = ( ( 𝑃 𝑄 ) 𝑆 ) )
52 1 2 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴 ) → 𝑇 ( 𝑄 𝑇 ) )
53 6 9 17 52 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑇 ( 𝑄 𝑇 ) )
54 5 1 3 latleeqm2 ( ( 𝐾 ∈ Lat ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑇 ( 𝑄 𝑇 ) ↔ ( ( 𝑄 𝑇 ) 𝑇 ) = 𝑇 ) )
55 7 19 47 54 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑇 ( 𝑄 𝑇 ) ↔ ( ( 𝑄 𝑇 ) 𝑇 ) = 𝑇 ) )
56 53 55 mpbid ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑇 ) 𝑇 ) = 𝑇 )
57 51 56 oveq12d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) 𝑄 ) ( ( 𝑄 𝑇 ) 𝑇 ) ) = ( ( ( 𝑃 𝑄 ) 𝑆 ) 𝑇 ) )
58 49 57 eqtr2d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑄 ) 𝑆 ) 𝑇 ) = ( ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) 𝑇 ) )
59 simp12 ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) )
60 5 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) )
61 7 41 47 60 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) )
62 5 1 2 latjlej1 ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) → ( ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) 𝑄 ) ( ( 𝑄 𝑅 ) 𝑄 ) ) )
63 7 61 24 43 62 syl13anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) → ( ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) 𝑄 ) ( ( 𝑄 𝑅 ) 𝑄 ) ) )
64 59 63 mpd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) 𝑄 ) ( ( 𝑄 𝑅 ) 𝑄 ) )
65 1 2 4 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴 ) → 𝑄 ( 𝑄 𝑇 ) )
66 6 9 17 65 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑄 ( 𝑄 𝑇 ) )
67 5 1 2 3 4 atmod4i1 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴 ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑄 ( 𝑄 𝑇 ) ) → ( ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) 𝑄 ) = ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) )
68 6 9 41 47 66 67 syl131anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) 𝑄 ) = ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) )
69 2 4 hlatj32 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑅𝐴𝑄𝐴 ) ) → ( ( 𝑄 𝑅 ) 𝑄 ) = ( ( 𝑄 𝑄 ) 𝑅 ) )
70 6 9 22 9 69 syl13anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑅 ) 𝑄 ) = ( ( 𝑄 𝑄 ) 𝑅 ) )
71 5 2 latjidm ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 𝑄 ) = 𝑄 )
72 7 43 71 syl2anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( 𝑄 𝑄 ) = 𝑄 )
73 72 oveq1d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑄 ) 𝑅 ) = ( 𝑄 𝑅 ) )
74 70 73 eqtrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑅 ) 𝑄 ) = ( 𝑄 𝑅 ) )
75 64 68 74 3brtr3d ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) )
76 1 2 4 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴 ) → 𝑇 ( 𝑇 𝑈 ) )
77 6 17 25 76 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → 𝑇 ( 𝑇 𝑈 ) )
78 5 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 𝑆 ) 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) )
79 7 45 47 78 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) )
80 5 1 3 latmlem12 ( ( 𝐾 ∈ Lat ∧ ( ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ 𝑇 ( 𝑇 𝑈 ) ) → ( ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) 𝑇 ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ) )
81 7 79 24 19 27 80 syl122anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ 𝑇 ( 𝑇 𝑈 ) ) → ( ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) 𝑇 ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ) )
82 75 77 81 mp2and ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( ( 𝑃 𝑆 ) 𝑄 ) ( 𝑄 𝑇 ) ) 𝑇 ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) )
83 58 82 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑄 ) 𝑆 ) 𝑇 ) ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) )
84 5 1 2 latlej1 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )
85 7 29 35 84 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )
86 5 1 7 21 29 37 83 85 lattrd ( ( ( 𝐾 ∈ HL ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑄 𝑅 ) ∧ ( ( 𝑃 𝑆 ) ( 𝑄 𝑇 ) ) ( 𝑅 𝑈 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( ( 𝑃 𝑄 ) 𝑆 ) 𝑇 ) ( ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) ) ) )