Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | da.ps0 | ⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) | |
Assertion | dalem-ccly | ⊢ ( 𝜓 → ¬ 𝑐 ≤ 𝑌 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | ⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) | |
2 | 1 | simp2bi | ⊢ ( 𝜓 → ¬ 𝑐 ≤ 𝑌 ) |