| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalema.ph | 
							⊢ ( 𝜑  ↔  ( ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  ∧  ( 𝑌  ∈  𝑂  ∧  𝑍  ∈  𝑂 )  ∧  ( ( ¬  𝐶  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝐶  ≤  ( 𝑄  ∨  𝑅 )  ∧  ¬  𝐶  ≤  ( 𝑅  ∨  𝑃 ) )  ∧  ( ¬  𝐶  ≤  ( 𝑆  ∨  𝑇 )  ∧  ¬  𝐶  ≤  ( 𝑇  ∨  𝑈 )  ∧  ¬  𝐶  ≤  ( 𝑈  ∨  𝑆 ) )  ∧  ( 𝐶  ≤  ( 𝑃  ∨  𝑆 )  ∧  𝐶  ≤  ( 𝑄  ∨  𝑇 )  ∧  𝐶  ≤  ( 𝑅  ∨  𝑈 ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalemc.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							dalemc.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							dalemc.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem-cly.o | 
							⊢ 𝑂  =  ( LPlanes ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem-cly.y | 
							⊢ 𝑌  =  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem-cly.z | 
							⊢ 𝑍  =  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 )  | 
						
						
							| 8 | 
							
								1
							 | 
							dalemkelat | 
							⊢ ( 𝜑  →  𝐾  ∈  Lat )  | 
						
						
							| 9 | 
							
								1 4
							 | 
							dalemceb | 
							⊢ ( 𝜑  →  𝐶  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 10 | 
							
								1 5
							 | 
							dalemyeb | 
							⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 12 | 
							
								11 2 3
							 | 
							latleeqj1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝐶  ∈  ( Base ‘ 𝐾 )  ∧  𝑌  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐶  ≤  𝑌  ↔  ( 𝐶  ∨  𝑌 )  =  𝑌 ) )  | 
						
						
							| 13 | 
							
								8 9 10 12
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐶  ≤  𝑌  ↔  ( 𝐶  ∨  𝑌 )  =  𝑌 ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							dalemclpjs | 
							⊢ ( 𝜑  →  𝐶  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							dalemkehl | 
							⊢ ( 𝜑  →  𝐾  ∈  HL )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6
							 | 
							dalemcea | 
							⊢ ( 𝜑  →  𝐶  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								1
							 | 
							dalemsea | 
							⊢ ( 𝜑  →  𝑆  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								1
							 | 
							dalempea | 
							⊢ ( 𝜑  →  𝑃  ∈  𝐴 )  | 
						
						
							| 19 | 
							
								1
							 | 
							dalemqea | 
							⊢ ( 𝜑  →  𝑄  ∈  𝐴 )  | 
						
						
							| 20 | 
							
								1
							 | 
							dalem-clpjq | 
							⊢ ( 𝜑  →  ¬  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 21 | 
							
								2 3 4
							 | 
							atnlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐶  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐶  ≠  𝑃 )  | 
						
						
							| 22 | 
							
								15 16 18 19 20 21
							 | 
							syl131anc | 
							⊢ ( 𝜑  →  𝐶  ≠  𝑃 )  | 
						
						
							| 23 | 
							
								2 3 4
							 | 
							hlatexch1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐶  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  𝐶  ≠  𝑃 )  →  ( 𝐶  ≤  ( 𝑃  ∨  𝑆 )  →  𝑆  ≤  ( 𝑃  ∨  𝐶 ) ) )  | 
						
						
							| 24 | 
							
								15 16 17 18 22 23
							 | 
							syl131anc | 
							⊢ ( 𝜑  →  ( 𝐶  ≤  ( 𝑃  ∨  𝑆 )  →  𝑆  ≤  ( 𝑃  ∨  𝐶 ) ) )  | 
						
						
							| 25 | 
							
								14 24
							 | 
							mpd | 
							⊢ ( 𝜑  →  𝑆  ≤  ( 𝑃  ∨  𝐶 ) )  | 
						
						
							| 26 | 
							
								3 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  →  ( 𝐶  ∨  𝑃 )  =  ( 𝑃  ∨  𝐶 ) )  | 
						
						
							| 27 | 
							
								15 16 18 26
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∨  𝑃 )  =  ( 𝑃  ∨  𝐶 ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  𝑆  ≤  ( 𝐶  ∨  𝑃 ) )  | 
						
						
							| 29 | 
							
								1
							 | 
							dalemclqjt | 
							⊢ ( 𝜑  →  𝐶  ≤  ( 𝑄  ∨  𝑇 ) )  | 
						
						
							| 30 | 
							
								1
							 | 
							dalemtea | 
							⊢ ( 𝜑  →  𝑇  ∈  𝐴 )  | 
						
						
							| 31 | 
							
								1
							 | 
							dalemrea | 
							⊢ ( 𝜑  →  𝑅  ∈  𝐴 )  | 
						
						
							| 32 | 
							
								
							 | 
							simp312 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  ∧  ( 𝑌  ∈  𝑂  ∧  𝑍  ∈  𝑂 )  ∧  ( ( ¬  𝐶  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝐶  ≤  ( 𝑄  ∨  𝑅 )  ∧  ¬  𝐶  ≤  ( 𝑅  ∨  𝑃 ) )  ∧  ( ¬  𝐶  ≤  ( 𝑆  ∨  𝑇 )  ∧  ¬  𝐶  ≤  ( 𝑇  ∨  𝑈 )  ∧  ¬  𝐶  ≤  ( 𝑈  ∨  𝑆 ) )  ∧  ( 𝐶  ≤  ( 𝑃  ∨  𝑆 )  ∧  𝐶  ≤  ( 𝑄  ∨  𝑇 )  ∧  𝐶  ≤  ( 𝑅  ∨  𝑈 ) ) ) )  →  ¬  𝐶  ≤  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 33 | 
							
								1 32
							 | 
							sylbi | 
							⊢ ( 𝜑  →  ¬  𝐶  ≤  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 34 | 
							
								2 3 4
							 | 
							atnlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐶  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝐶  ≤  ( 𝑄  ∨  𝑅 ) )  →  𝐶  ≠  𝑄 )  | 
						
						
							| 35 | 
							
								15 16 19 31 33 34
							 | 
							syl131anc | 
							⊢ ( 𝜑  →  𝐶  ≠  𝑄 )  | 
						
						
							| 36 | 
							
								2 3 4
							 | 
							hlatexch1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐶  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝐶  ≠  𝑄 )  →  ( 𝐶  ≤  ( 𝑄  ∨  𝑇 )  →  𝑇  ≤  ( 𝑄  ∨  𝐶 ) ) )  | 
						
						
							| 37 | 
							
								15 16 30 19 35 36
							 | 
							syl131anc | 
							⊢ ( 𝜑  →  ( 𝐶  ≤  ( 𝑄  ∨  𝑇 )  →  𝑇  ≤  ( 𝑄  ∨  𝐶 ) ) )  | 
						
						
							| 38 | 
							
								29 37
							 | 
							mpd | 
							⊢ ( 𝜑  →  𝑇  ≤  ( 𝑄  ∨  𝐶 ) )  | 
						
						
							| 39 | 
							
								3 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝐶  ∨  𝑄 )  =  ( 𝑄  ∨  𝐶 ) )  | 
						
						
							| 40 | 
							
								15 16 19 39
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∨  𝑄 )  =  ( 𝑄  ∨  𝐶 ) )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  𝑇  ≤  ( 𝐶  ∨  𝑄 ) )  | 
						
						
							| 42 | 
							
								1 4
							 | 
							dalemseb | 
							⊢ ( 𝜑  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 43 | 
							
								11 3 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  →  ( 𝐶  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								15 16 18 43
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 45 | 
							
								1 4
							 | 
							dalemteb | 
							⊢ ( 𝜑  →  𝑇  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 46 | 
							
								11 3 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝐶  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 47 | 
							
								15 16 19 46
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 48 | 
							
								11 2 3
							 | 
							latjlej12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐶  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑇  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐶  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑆  ≤  ( 𝐶  ∨  𝑃 )  ∧  𝑇  ≤  ( 𝐶  ∨  𝑄 ) )  →  ( 𝑆  ∨  𝑇 )  ≤  ( ( 𝐶  ∨  𝑃 )  ∨  ( 𝐶  ∨  𝑄 ) ) ) )  | 
						
						
							| 49 | 
							
								8 42 44 45 47 48
							 | 
							syl122anc | 
							⊢ ( 𝜑  →  ( ( 𝑆  ≤  ( 𝐶  ∨  𝑃 )  ∧  𝑇  ≤  ( 𝐶  ∨  𝑄 ) )  →  ( 𝑆  ∨  𝑇 )  ≤  ( ( 𝐶  ∨  𝑃 )  ∨  ( 𝐶  ∨  𝑄 ) ) ) )  | 
						
						
							| 50 | 
							
								28 41 49
							 | 
							mp2and | 
							⊢ ( 𝜑  →  ( 𝑆  ∨  𝑇 )  ≤  ( ( 𝐶  ∨  𝑃 )  ∨  ( 𝐶  ∨  𝑄 ) ) )  | 
						
						
							| 51 | 
							
								1 4
							 | 
							dalempeb | 
							⊢ ( 𝜑  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 52 | 
							
								1 4
							 | 
							dalemqeb | 
							⊢ ( 𝜑  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 53 | 
							
								11 3
							 | 
							latjjdi | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐶  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  =  ( ( 𝐶  ∨  𝑃 )  ∨  ( 𝐶  ∨  𝑄 ) ) )  | 
						
						
							| 54 | 
							
								8 9 51 52 53
							 | 
							syl13anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  =  ( ( 𝐶  ∨  𝑃 )  ∨  ( 𝐶  ∨  𝑄 ) ) )  | 
						
						
							| 55 | 
							
								50 54
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  ( 𝑆  ∨  𝑇 )  ≤  ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 56 | 
							
								1
							 | 
							dalemclrju | 
							⊢ ( 𝜑  →  𝐶  ≤  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 57 | 
							
								1
							 | 
							dalemuea | 
							⊢ ( 𝜑  →  𝑈  ∈  𝐴 )  | 
						
						
							| 58 | 
							
								
							 | 
							simp313 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  ∧  ( 𝑌  ∈  𝑂  ∧  𝑍  ∈  𝑂 )  ∧  ( ( ¬  𝐶  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝐶  ≤  ( 𝑄  ∨  𝑅 )  ∧  ¬  𝐶  ≤  ( 𝑅  ∨  𝑃 ) )  ∧  ( ¬  𝐶  ≤  ( 𝑆  ∨  𝑇 )  ∧  ¬  𝐶  ≤  ( 𝑇  ∨  𝑈 )  ∧  ¬  𝐶  ≤  ( 𝑈  ∨  𝑆 ) )  ∧  ( 𝐶  ≤  ( 𝑃  ∨  𝑆 )  ∧  𝐶  ≤  ( 𝑄  ∨  𝑇 )  ∧  𝐶  ≤  ( 𝑅  ∨  𝑈 ) ) ) )  →  ¬  𝐶  ≤  ( 𝑅  ∨  𝑃 ) )  | 
						
						
							| 59 | 
							
								1 58
							 | 
							sylbi | 
							⊢ ( 𝜑  →  ¬  𝐶  ≤  ( 𝑅  ∨  𝑃 ) )  | 
						
						
							| 60 | 
							
								2 3 4
							 | 
							atnlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐶  ∈  𝐴  ∧  𝑅  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  ¬  𝐶  ≤  ( 𝑅  ∨  𝑃 ) )  →  𝐶  ≠  𝑅 )  | 
						
						
							| 61 | 
							
								15 16 31 18 59 60
							 | 
							syl131anc | 
							⊢ ( 𝜑  →  𝐶  ≠  𝑅 )  | 
						
						
							| 62 | 
							
								2 3 4
							 | 
							hlatexch1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐶  ∈  𝐴  ∧  𝑈  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝐶  ≠  𝑅 )  →  ( 𝐶  ≤  ( 𝑅  ∨  𝑈 )  →  𝑈  ≤  ( 𝑅  ∨  𝐶 ) ) )  | 
						
						
							| 63 | 
							
								15 16 57 31 61 62
							 | 
							syl131anc | 
							⊢ ( 𝜑  →  ( 𝐶  ≤  ( 𝑅  ∨  𝑈 )  →  𝑈  ≤  ( 𝑅  ∨  𝐶 ) ) )  | 
						
						
							| 64 | 
							
								56 63
							 | 
							mpd | 
							⊢ ( 𝜑  →  𝑈  ≤  ( 𝑅  ∨  𝐶 ) )  | 
						
						
							| 65 | 
							
								3 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝐶  ∨  𝑅 )  =  ( 𝑅  ∨  𝐶 ) )  | 
						
						
							| 66 | 
							
								15 16 31 65
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∨  𝑅 )  =  ( 𝑅  ∨  𝐶 ) )  | 
						
						
							| 67 | 
							
								64 66
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  𝑈  ≤  ( 𝐶  ∨  𝑅 ) )  | 
						
						
							| 68 | 
							
								1 3 4
							 | 
							dalemsjteb | 
							⊢ ( 𝜑  →  ( 𝑆  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 69 | 
							
								1 3 4
							 | 
							dalempjqeb | 
							⊢ ( 𝜑  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 70 | 
							
								11 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝐶  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 71 | 
							
								8 9 69 70
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 72 | 
							
								1 4
							 | 
							dalemueb | 
							⊢ ( 𝜑  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 73 | 
							
								11 3 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝐶  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 74 | 
							
								15 16 31 73
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 75 | 
							
								11 2 3
							 | 
							latjlej12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑆  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐶  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑆  ∨  𝑇 )  ≤  ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∧  𝑈  ≤  ( 𝐶  ∨  𝑅 ) )  →  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 )  ≤  ( ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∨  ( 𝐶  ∨  𝑅 ) ) ) )  | 
						
						
							| 76 | 
							
								8 68 71 72 74 75
							 | 
							syl122anc | 
							⊢ ( 𝜑  →  ( ( ( 𝑆  ∨  𝑇 )  ≤  ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∧  𝑈  ≤  ( 𝐶  ∨  𝑅 ) )  →  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 )  ≤  ( ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∨  ( 𝐶  ∨  𝑅 ) ) ) )  | 
						
						
							| 77 | 
							
								55 67 76
							 | 
							mp2and | 
							⊢ ( 𝜑  →  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 )  ≤  ( ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∨  ( 𝐶  ∨  𝑅 ) ) )  | 
						
						
							| 78 | 
							
								1 4
							 | 
							dalemreb | 
							⊢ ( 𝜑  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 79 | 
							
								11 3
							 | 
							latjjdi | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐶  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝐶  ∨  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) )  =  ( ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∨  ( 𝐶  ∨  𝑅 ) ) )  | 
						
						
							| 80 | 
							
								8 9 69 78 79
							 | 
							syl13anc | 
							⊢ ( 𝜑  →  ( 𝐶  ∨  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) )  =  ( ( 𝐶  ∨  ( 𝑃  ∨  𝑄 ) )  ∨  ( 𝐶  ∨  𝑅 ) ) )  | 
						
						
							| 81 | 
							
								77 80
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 )  ≤  ( 𝐶  ∨  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) ) )  | 
						
						
							| 82 | 
							
								6
							 | 
							oveq2i | 
							⊢ ( 𝐶  ∨  𝑌 )  =  ( 𝐶  ∨  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 ) )  | 
						
						
							| 83 | 
							
								81 7 82
							 | 
							3brtr4g | 
							⊢ ( 𝜑  →  𝑍  ≤  ( 𝐶  ∨  𝑌 ) )  | 
						
						
							| 84 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( 𝐶  ∨  𝑌 )  =  𝑌  →  ( 𝑍  ≤  ( 𝐶  ∨  𝑌 )  ↔  𝑍  ≤  𝑌 ) )  | 
						
						
							| 85 | 
							
								83 84
							 | 
							syl5ibcom | 
							⊢ ( 𝜑  →  ( ( 𝐶  ∨  𝑌 )  =  𝑌  →  𝑍  ≤  𝑌 ) )  | 
						
						
							| 86 | 
							
								13 85
							 | 
							sylbid | 
							⊢ ( 𝜑  →  ( 𝐶  ≤  𝑌  →  𝑍  ≤  𝑌 ) )  | 
						
						
							| 87 | 
							
								1
							 | 
							dalemzeo | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑂 )  | 
						
						
							| 88 | 
							
								1
							 | 
							dalemyeo | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑂 )  | 
						
						
							| 89 | 
							
								2 5
							 | 
							lplncmp | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑍  ∈  𝑂  ∧  𝑌  ∈  𝑂 )  →  ( 𝑍  ≤  𝑌  ↔  𝑍  =  𝑌 ) )  | 
						
						
							| 90 | 
							
								15 87 88 89
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝑍  ≤  𝑌  ↔  𝑍  =  𝑌 ) )  | 
						
						
							| 91 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑍  =  𝑌  ↔  𝑌  =  𝑍 )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( 𝑍  ≤  𝑌  ↔  𝑌  =  𝑍 ) )  | 
						
						
							| 93 | 
							
								86 92
							 | 
							sylibd | 
							⊢ ( 𝜑  →  ( 𝐶  ≤  𝑌  →  𝑌  =  𝑍 ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							necon3ad | 
							⊢ ( 𝜑  →  ( 𝑌  ≠  𝑍  →  ¬  𝐶  ≤  𝑌 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑌  ≠  𝑍 )  →  ¬  𝐶  ≤  𝑌 )  |