Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem1.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
6 |
|
dalem1.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
7 |
1
|
dalemclpjs |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) |
8 |
1
|
dalem-clpjq |
⊢ ( 𝜑 → ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) |
10 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
11 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
12 |
1
|
dalemsea |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
13 |
2 3 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) |
14 |
10 11 12 13
|
syl3anc |
⊢ ( 𝜑 → 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) |
16 |
1
|
dalemqea |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
17 |
1
|
dalemtea |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
18 |
2 3 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑇 ) ) |
19 |
10 16 17 18
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ≤ ( 𝑄 ∨ 𝑇 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → 𝑄 ≤ ( 𝑄 ∨ 𝑇 ) ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) |
22 |
20 21
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑆 ) ) |
23 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
24 |
1 4
|
dalempeb |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
25 |
1 4
|
dalemqeb |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
27 |
26 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
10 11 12 27
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
26 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑆 ) ) ↔ ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑆 ) ) ) |
30 |
23 24 25 28 29
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑆 ) ) ↔ ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑆 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑆 ) ) ↔ ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑆 ) ) ) |
32 |
15 22 31
|
mpbi2and |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑆 ) ) |
33 |
1
|
dalemrea |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
34 |
1
|
dalemyeo |
⊢ ( 𝜑 → 𝑌 ∈ 𝑂 ) |
35 |
3 4 5 6
|
lplnri1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑂 ) → 𝑃 ≠ 𝑄 ) |
36 |
10 11 16 33 34 35
|
syl131anc |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
37 |
2 3 4
|
ps-1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑆 ) ↔ ( 𝑃 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑆 ) ) ) |
38 |
10 11 16 36 11 12 37
|
syl132anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑆 ) ↔ ( 𝑃 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑆 ) ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑃 ∨ 𝑆 ) ↔ ( 𝑃 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑆 ) ) ) |
40 |
32 39
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑆 ) ) |
41 |
40
|
breq2d |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → ( 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) |
42 |
9 41
|
mtbid |
⊢ ( ( 𝜑 ∧ ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) ) → ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) |
43 |
42
|
ex |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑆 ) = ( 𝑄 ∨ 𝑇 ) → ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ) |
44 |
43
|
necon2ad |
⊢ ( 𝜑 → ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) → ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑄 ∨ 𝑇 ) ) ) |
45 |
7 44
|
mpd |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑄 ∨ 𝑇 ) ) |