Metamath Proof Explorer


Theorem dalem13

Description: Lemma for dalem14 . (Contributed by NM, 21-Jul-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem13.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem13.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem13.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem13.w 𝑊 = ( 𝑌 𝐶 )
Assertion dalem13 ( ( 𝜑𝑌𝑍 ) → ( 𝑌 𝑍 ) = 𝑊 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem13.o 𝑂 = ( LPlanes ‘ 𝐾 )
6 dalem13.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
7 dalem13.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
8 dalem13.w 𝑊 = ( 𝑌 𝐶 )
9 1 dalemkehl ( 𝜑𝐾 ∈ HL )
10 9 adantr ( ( 𝜑𝑌𝑍 ) → 𝐾 ∈ HL )
11 1 dalemyeo ( 𝜑𝑌𝑂 )
12 11 adantr ( ( 𝜑𝑌𝑍 ) → 𝑌𝑂 )
13 1 dalemzeo ( 𝜑𝑍𝑂 )
14 13 adantr ( ( 𝜑𝑌𝑍 ) → 𝑍𝑂 )
15 eqid ( LVols ‘ 𝐾 ) = ( LVols ‘ 𝐾 )
16 1 2 3 4 5 15 6 7 8 dalem9 ( ( 𝜑𝑌𝑍 ) → 𝑊 ∈ ( LVols ‘ 𝐾 ) )
17 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
18 1 5 dalemyeb ( 𝜑𝑌 ∈ ( Base ‘ 𝐾 ) )
19 1 4 dalemceb ( 𝜑𝐶 ∈ ( Base ‘ 𝐾 ) )
20 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
21 20 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) → 𝑌 ( 𝑌 𝐶 ) )
22 17 18 19 21 syl3anc ( 𝜑𝑌 ( 𝑌 𝐶 ) )
23 22 8 breqtrrdi ( 𝜑𝑌 𝑊 )
24 23 adantr ( ( 𝜑𝑌𝑍 ) → 𝑌 𝑊 )
25 1 2 3 4 5 6 7 8 dalem8 ( 𝜑𝑍 𝑊 )
26 25 adantr ( ( 𝜑𝑌𝑍 ) → 𝑍 𝑊 )
27 simpr ( ( 𝜑𝑌𝑍 ) → 𝑌𝑍 )
28 2 3 5 15 2lplnj ( ( 𝐾 ∈ HL ∧ ( 𝑌𝑂𝑍𝑂𝑊 ∈ ( LVols ‘ 𝐾 ) ) ∧ ( 𝑌 𝑊𝑍 𝑊𝑌𝑍 ) ) → ( 𝑌 𝑍 ) = 𝑊 )
29 10 12 14 16 24 26 27 28 syl133anc ( ( 𝜑𝑌𝑍 ) → ( 𝑌 𝑍 ) = 𝑊 )