Description: Lemma for dath . Planes Y and Z form a 3-dimensional space (when they are different). (Contributed by NM, 22-Jul-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | ⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) | |
dalemc.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
dalemc.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
dalemc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
dalem14.o | ⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) | ||
dalem14.v | ⊢ 𝑉 = ( LVols ‘ 𝐾 ) | ||
dalem14.y | ⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) | ||
dalem14.z | ⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) | ||
dalem14.w | ⊢ 𝑊 = ( 𝑌 ∨ 𝐶 ) | ||
Assertion | dalem14 | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ 𝑍 ) → ( 𝑌 ∨ 𝑍 ) ∈ 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | ⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) | |
2 | dalemc.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
3 | dalemc.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
4 | dalemc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
5 | dalem14.o | ⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) | |
6 | dalem14.v | ⊢ 𝑉 = ( LVols ‘ 𝐾 ) | |
7 | dalem14.y | ⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) | |
8 | dalem14.z | ⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) | |
9 | dalem14.w | ⊢ 𝑊 = ( 𝑌 ∨ 𝐶 ) | |
10 | 1 2 3 4 5 7 8 9 | dalem13 | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ 𝑍 ) → ( 𝑌 ∨ 𝑍 ) = 𝑊 ) |
11 | 1 2 3 4 5 6 7 8 9 | dalem9 | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ 𝑍 ) → 𝑊 ∈ 𝑉 ) |
12 | 10 11 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ 𝑍 ) → ( 𝑌 ∨ 𝑍 ) ∈ 𝑉 ) |