| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
| 2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
dalem15.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 6 |
|
dalem15.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
| 7 |
|
dalem15.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
| 8 |
|
dalem15.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
| 9 |
|
dalem15.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
| 10 |
|
dalem15.x |
⊢ 𝑋 = ( 𝑌 ∧ 𝑍 ) |
| 11 |
|
eqid |
⊢ ( LVols ‘ 𝐾 ) = ( LVols ‘ 𝐾 ) |
| 12 |
|
eqid |
⊢ ( 𝑌 ∨ 𝐶 ) = ( 𝑌 ∨ 𝐶 ) |
| 13 |
1 2 3 4 7 11 8 9 12
|
dalem14 |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 𝑍 ) → ( 𝑌 ∨ 𝑍 ) ∈ ( LVols ‘ 𝐾 ) ) |
| 14 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 15 |
1
|
dalemyeo |
⊢ ( 𝜑 → 𝑌 ∈ 𝑂 ) |
| 16 |
1
|
dalemzeo |
⊢ ( 𝜑 → 𝑍 ∈ 𝑂 ) |
| 17 |
3 5 6 7 11
|
2lplnmj |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) → ( ( 𝑌 ∧ 𝑍 ) ∈ 𝑁 ↔ ( 𝑌 ∨ 𝑍 ) ∈ ( LVols ‘ 𝐾 ) ) ) |
| 18 |
14 15 16 17
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑌 ∧ 𝑍 ) ∈ 𝑁 ↔ ( 𝑌 ∨ 𝑍 ) ∈ ( LVols ‘ 𝐾 ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 𝑍 ) → ( ( 𝑌 ∧ 𝑍 ) ∈ 𝑁 ↔ ( 𝑌 ∨ 𝑍 ) ∈ ( LVols ‘ 𝐾 ) ) ) |
| 20 |
13 19
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 𝑍 ) → ( 𝑌 ∧ 𝑍 ) ∈ 𝑁 ) |
| 21 |
10 20
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 𝑍 ) → 𝑋 ∈ 𝑁 ) |