Metamath Proof Explorer


Theorem dalem15

Description: Lemma for dath . The axis of perspectivity X is a line. (Contributed by NM, 21-Jul-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem15.m = ( meet ‘ 𝐾 )
dalem15.n 𝑁 = ( LLines ‘ 𝐾 )
dalem15.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem15.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem15.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem15.x 𝑋 = ( 𝑌 𝑍 )
Assertion dalem15 ( ( 𝜑𝑌𝑍 ) → 𝑋𝑁 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem15.m = ( meet ‘ 𝐾 )
6 dalem15.n 𝑁 = ( LLines ‘ 𝐾 )
7 dalem15.o 𝑂 = ( LPlanes ‘ 𝐾 )
8 dalem15.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
9 dalem15.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
10 dalem15.x 𝑋 = ( 𝑌 𝑍 )
11 eqid ( LVols ‘ 𝐾 ) = ( LVols ‘ 𝐾 )
12 eqid ( 𝑌 𝐶 ) = ( 𝑌 𝐶 )
13 1 2 3 4 7 11 8 9 12 dalem14 ( ( 𝜑𝑌𝑍 ) → ( 𝑌 𝑍 ) ∈ ( LVols ‘ 𝐾 ) )
14 1 dalemkehl ( 𝜑𝐾 ∈ HL )
15 1 dalemyeo ( 𝜑𝑌𝑂 )
16 1 dalemzeo ( 𝜑𝑍𝑂 )
17 3 5 6 7 11 2lplnmj ( ( 𝐾 ∈ HL ∧ 𝑌𝑂𝑍𝑂 ) → ( ( 𝑌 𝑍 ) ∈ 𝑁 ↔ ( 𝑌 𝑍 ) ∈ ( LVols ‘ 𝐾 ) ) )
18 14 15 16 17 syl3anc ( 𝜑 → ( ( 𝑌 𝑍 ) ∈ 𝑁 ↔ ( 𝑌 𝑍 ) ∈ ( LVols ‘ 𝐾 ) ) )
19 18 adantr ( ( 𝜑𝑌𝑍 ) → ( ( 𝑌 𝑍 ) ∈ 𝑁 ↔ ( 𝑌 𝑍 ) ∈ ( LVols ‘ 𝐾 ) ) )
20 13 19 mpbird ( ( 𝜑𝑌𝑍 ) → ( 𝑌 𝑍 ) ∈ 𝑁 )
21 10 20 eqeltrid ( ( 𝜑𝑌𝑍 ) → 𝑋𝑁 )