| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
| 2 |
|
dalem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dalem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dalem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
dalem.ps |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
| 6 |
|
dalem21.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 7 |
|
dalem21.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
| 8 |
|
dalem21.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
| 9 |
|
dalem21.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
| 10 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ HL ) |
| 12 |
1 2 3 4 5
|
dalemcjden |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑑 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 13 |
12
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑑 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 14 |
1 2 3 4 7 8
|
dalempjsen |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 15 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑃 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 16 |
1 2 3 4 7 8
|
dalemply |
⊢ ( 𝜑 → 𝑃 ≤ 𝑌 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → 𝑃 ≤ 𝑌 ) |
| 18 |
1 2 3 4 9
|
dalemsly |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → 𝑆 ≤ 𝑌 ) |
| 19 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
| 20 |
1 4
|
dalempeb |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
1 4
|
dalemseb |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
1 7
|
dalemyeb |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 24 |
23 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ 𝑌 ∧ 𝑆 ≤ 𝑌 ) ↔ ( 𝑃 ∨ 𝑆 ) ≤ 𝑌 ) ) |
| 25 |
19 20 21 22 24
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑃 ≤ 𝑌 ∧ 𝑆 ≤ 𝑌 ) ↔ ( 𝑃 ∨ 𝑆 ) ≤ 𝑌 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → ( ( 𝑃 ≤ 𝑌 ∧ 𝑆 ≤ 𝑌 ) ↔ ( 𝑃 ∨ 𝑆 ) ≤ 𝑌 ) ) |
| 27 |
17 18 26
|
mpbi2and |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → ( 𝑃 ∨ 𝑆 ) ≤ 𝑌 ) |
| 28 |
27
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑃 ∨ 𝑆 ) ≤ 𝑌 ) |
| 29 |
5
|
dalem-ccly |
⊢ ( 𝜓 → ¬ 𝑐 ≤ 𝑌 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝑐 ≤ 𝑌 ) |
| 31 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 ∈ Lat ) |
| 32 |
5 4
|
dalemcceb |
⊢ ( 𝜓 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
| 34 |
5
|
dalemddea |
⊢ ( 𝜓 → 𝑑 ∈ 𝐴 ) |
| 35 |
23 4
|
atbase |
⊢ ( 𝑑 ∈ 𝐴 → 𝑑 ∈ ( Base ‘ 𝐾 ) ) |
| 36 |
34 35
|
syl |
⊢ ( 𝜓 → 𝑑 ∈ ( Base ‘ 𝐾 ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑑 ∈ ( Base ‘ 𝐾 ) ) |
| 38 |
23 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ 𝑑 ∈ ( Base ‘ 𝐾 ) ) → 𝑐 ≤ ( 𝑐 ∨ 𝑑 ) ) |
| 39 |
31 33 37 38
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑐 ≤ ( 𝑐 ∨ 𝑑 ) ) |
| 40 |
|
eqid |
⊢ ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 ) |
| 41 |
23 40
|
llnbase |
⊢ ( ( 𝑐 ∨ 𝑑 ) ∈ ( LLines ‘ 𝐾 ) → ( 𝑐 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) |
| 42 |
12 41
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) |
| 43 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 44 |
23 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑐 ≤ ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑐 ∨ 𝑑 ) ≤ 𝑌 ) → 𝑐 ≤ 𝑌 ) ) |
| 45 |
31 33 42 43 44
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑐 ≤ ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑐 ∨ 𝑑 ) ≤ 𝑌 ) → 𝑐 ≤ 𝑌 ) ) |
| 46 |
39 45
|
mpand |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑑 ) ≤ 𝑌 → 𝑐 ≤ 𝑌 ) ) |
| 47 |
30 46
|
mtod |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ ( 𝑐 ∨ 𝑑 ) ≤ 𝑌 ) |
| 48 |
47
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ ( 𝑐 ∨ 𝑑 ) ≤ 𝑌 ) |
| 49 |
|
nbrne2 |
⊢ ( ( ( 𝑃 ∨ 𝑆 ) ≤ 𝑌 ∧ ¬ ( 𝑐 ∨ 𝑑 ) ≤ 𝑌 ) → ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑐 ∨ 𝑑 ) ) |
| 50 |
28 48 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑐 ∨ 𝑑 ) ) |
| 51 |
50
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑑 ) ≠ ( 𝑃 ∨ 𝑆 ) ) |
| 52 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 53 |
10 52
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ AtLat ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 ∈ AtLat ) |
| 55 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 56 |
1
|
dalemsea |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
| 57 |
23 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 58 |
10 55 56 57
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
| 60 |
23 6
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 61 |
31 42 59 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 62 |
1 2 3 4 7 8
|
dalemcea |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ 𝐴 ) |
| 64 |
5
|
dalemclccjdd |
⊢ ( 𝜓 → 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) |
| 65 |
64
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) |
| 66 |
1
|
dalemclpjs |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) |
| 68 |
1 4
|
dalemceb |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐾 ) ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ∈ ( Base ‘ 𝐾 ) ) |
| 70 |
23 2 6
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ↔ 𝐶 ≤ ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ) |
| 71 |
31 69 42 59 70
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ∧ 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) ↔ 𝐶 ≤ ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) ) |
| 72 |
65 67 71
|
mpbi2and |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ≤ ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) |
| 73 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 74 |
23 2 73 4
|
atlen0 |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐶 ∈ 𝐴 ) ∧ 𝐶 ≤ ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ) → ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≠ ( 0. ‘ 𝐾 ) ) |
| 75 |
54 61 63 72 74
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≠ ( 0. ‘ 𝐾 ) ) |
| 76 |
75
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≠ ( 0. ‘ 𝐾 ) ) |
| 77 |
6 73 4 40
|
2llnmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑐 ∨ 𝑑 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) ∧ ( ( 𝑐 ∨ 𝑑 ) ≠ ( 𝑃 ∨ 𝑆 ) ∧ ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ≠ ( 0. ‘ 𝐾 ) ) ) → ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ 𝐴 ) |
| 78 |
11 13 15 51 76 77
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑃 ∨ 𝑆 ) ) ∈ 𝐴 ) |