| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
| 2 |
|
dalem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dalem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dalem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
dalem.ps |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
| 6 |
|
dalem23.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 7 |
|
dalem23.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
| 8 |
|
dalem23.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
| 9 |
|
dalem23.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
| 10 |
|
dalem23.g |
⊢ 𝐺 = ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) |
| 11 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐾 ∈ HL ) |
| 13 |
5
|
dalemccea |
⊢ ( 𝜓 → 𝑐 ∈ 𝐴 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑐 ∈ 𝐴 ) |
| 15 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑃 ∈ 𝐴 ) |
| 17 |
5
|
dalemddea |
⊢ ( 𝜓 → 𝑑 ∈ 𝐴 ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑑 ∈ 𝐴 ) |
| 19 |
1
|
dalemsea |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑆 ∈ 𝐴 ) |
| 21 |
3 4
|
hlatj4 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → ( ( 𝑐 ∨ 𝑃 ) ∨ ( 𝑑 ∨ 𝑆 ) ) = ( ( 𝑐 ∨ 𝑑 ) ∨ ( 𝑃 ∨ 𝑆 ) ) ) |
| 22 |
12 14 16 18 20 21
|
syl122anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑃 ) ∨ ( 𝑑 ∨ 𝑆 ) ) = ( ( 𝑐 ∨ 𝑑 ) ∨ ( 𝑃 ∨ 𝑆 ) ) ) |
| 23 |
22
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑃 ) ∨ ( 𝑑 ∨ 𝑆 ) ) = ( ( 𝑐 ∨ 𝑑 ) ∨ ( 𝑃 ∨ 𝑆 ) ) ) |
| 24 |
1 2 3 4 5 7 8 9
|
dalem22 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑑 ) ∨ ( 𝑃 ∨ 𝑆 ) ) ∈ 𝑂 ) |
| 25 |
23 24
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑃 ) ∨ ( 𝑑 ∨ 𝑆 ) ) ∈ 𝑂 ) |
| 26 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ HL ) |
| 27 |
1 2 3 4 7 8
|
dalemply |
⊢ ( 𝜑 → 𝑃 ≤ 𝑌 ) |
| 28 |
5
|
dalem-ccly |
⊢ ( 𝜓 → ¬ 𝑐 ≤ 𝑌 ) |
| 29 |
|
nbrne2 |
⊢ ( ( 𝑃 ≤ 𝑌 ∧ ¬ 𝑐 ≤ 𝑌 ) → 𝑃 ≠ 𝑐 ) |
| 30 |
27 28 29
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑃 ≠ 𝑐 ) |
| 31 |
30
|
necomd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑐 ≠ 𝑃 ) |
| 32 |
|
eqid |
⊢ ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 ) |
| 33 |
3 4 32
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑐 ≠ 𝑃 ) → ( 𝑐 ∨ 𝑃 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 34 |
12 14 16 31 33
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑃 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 35 |
34
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑃 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 36 |
17
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑑 ∈ 𝐴 ) |
| 37 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑆 ∈ 𝐴 ) |
| 38 |
1 2 3 4 9
|
dalemsly |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → 𝑆 ≤ 𝑌 ) |
| 39 |
38
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑆 ≤ 𝑌 ) |
| 40 |
5
|
dalem-ddly |
⊢ ( 𝜓 → ¬ 𝑑 ≤ 𝑌 ) |
| 41 |
40
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝑑 ≤ 𝑌 ) |
| 42 |
|
nbrne2 |
⊢ ( ( 𝑆 ≤ 𝑌 ∧ ¬ 𝑑 ≤ 𝑌 ) → 𝑆 ≠ 𝑑 ) |
| 43 |
39 41 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑆 ≠ 𝑑 ) |
| 44 |
43
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑑 ≠ 𝑆 ) |
| 45 |
3 4 32
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ∧ 𝑑 ≠ 𝑆 ) → ( 𝑑 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 46 |
26 36 37 44 45
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑑 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 47 |
3 6 4 32 7
|
2llnmj |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑐 ∨ 𝑃 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝑑 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) → ( ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) ∈ 𝐴 ↔ ( ( 𝑐 ∨ 𝑃 ) ∨ ( 𝑑 ∨ 𝑆 ) ) ∈ 𝑂 ) ) |
| 48 |
26 35 46 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) ∈ 𝐴 ↔ ( ( 𝑐 ∨ 𝑃 ) ∨ ( 𝑑 ∨ 𝑆 ) ) ∈ 𝑂 ) ) |
| 49 |
25 48
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) ∈ 𝐴 ) |
| 50 |
10 49
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 ∈ 𝐴 ) |