Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem.ps |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
6 |
|
dalem23.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
7 |
|
dalem23.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
8 |
|
dalem23.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
9 |
|
dalem23.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
10 |
|
dalem23.g |
⊢ 𝐺 = ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) |
11 |
1 2 3 4
|
dalemcnes |
⊢ ( 𝜑 → 𝐶 ≠ 𝑆 ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐶 ≠ 𝑆 ) |
13 |
5
|
dalemclccjdd |
⊢ ( 𝜓 → 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝑐 = 𝐺 ) |
17 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ Lat ) |
19 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ HL ) |
21 |
5
|
dalemccea |
⊢ ( 𝜓 → 𝑐 ∈ 𝐴 ) |
22 |
21
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ∈ 𝐴 ) |
23 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑃 ∈ 𝐴 ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
26 |
25 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑐 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
20 22 24 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
5
|
dalemddea |
⊢ ( 𝜓 → 𝑑 ∈ 𝐴 ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑑 ∈ 𝐴 ) |
30 |
1
|
dalemsea |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
31 |
30
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑆 ∈ 𝐴 ) |
32 |
25 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑑 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
20 29 31 32
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑑 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
25 2 6
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∨ 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑑 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) ≤ ( 𝑑 ∨ 𝑆 ) ) |
35 |
18 27 33 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) ≤ ( 𝑑 ∨ 𝑆 ) ) |
36 |
10 35
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 ≤ ( 𝑑 ∨ 𝑆 ) ) |
37 |
3 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑑 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑑 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑑 ) ) |
38 |
20 29 31 37
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑑 ∨ 𝑆 ) = ( 𝑆 ∨ 𝑑 ) ) |
39 |
36 38
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 ≤ ( 𝑆 ∨ 𝑑 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐺 ≤ ( 𝑆 ∨ 𝑑 ) ) |
41 |
16 40
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝑐 ≤ ( 𝑆 ∨ 𝑑 ) ) |
42 |
2 3 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → 𝑑 ≤ ( 𝑆 ∨ 𝑑 ) ) |
43 |
20 31 29 42
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑑 ≤ ( 𝑆 ∨ 𝑑 ) ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝑑 ≤ ( 𝑆 ∨ 𝑑 ) ) |
45 |
5 4
|
dalemcceb |
⊢ ( 𝜓 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
46 |
45
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
47 |
25 4
|
atbase |
⊢ ( 𝑑 ∈ 𝐴 → 𝑑 ∈ ( Base ‘ 𝐾 ) ) |
48 |
28 47
|
syl |
⊢ ( 𝜓 → 𝑑 ∈ ( Base ‘ 𝐾 ) ) |
49 |
48
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑑 ∈ ( Base ‘ 𝐾 ) ) |
50 |
25 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) |
51 |
20 31 29 50
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑆 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) |
52 |
25 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ 𝑑 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑐 ≤ ( 𝑆 ∨ 𝑑 ) ∧ 𝑑 ≤ ( 𝑆 ∨ 𝑑 ) ) ↔ ( 𝑐 ∨ 𝑑 ) ≤ ( 𝑆 ∨ 𝑑 ) ) ) |
53 |
18 46 49 51 52
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ≤ ( 𝑆 ∨ 𝑑 ) ∧ 𝑑 ≤ ( 𝑆 ∨ 𝑑 ) ) ↔ ( 𝑐 ∨ 𝑑 ) ≤ ( 𝑆 ∨ 𝑑 ) ) ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → ( ( 𝑐 ≤ ( 𝑆 ∨ 𝑑 ) ∧ 𝑑 ≤ ( 𝑆 ∨ 𝑑 ) ) ↔ ( 𝑐 ∨ 𝑑 ) ≤ ( 𝑆 ∨ 𝑑 ) ) ) |
55 |
41 44 54
|
mpbi2and |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝑐 ∨ 𝑑 ) ≤ ( 𝑆 ∨ 𝑑 ) ) |
56 |
1 4
|
dalemceb |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐾 ) ) |
57 |
56
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐶 ∈ ( Base ‘ 𝐾 ) ) |
58 |
25 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → ( 𝑐 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) |
59 |
20 22 29 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) |
60 |
25 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑐 ∨ 𝑑 ) ≤ ( 𝑆 ∨ 𝑑 ) ) → 𝐶 ≤ ( 𝑆 ∨ 𝑑 ) ) ) |
61 |
18 57 59 51 60
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑐 ∨ 𝑑 ) ≤ ( 𝑆 ∨ 𝑑 ) ) → 𝐶 ≤ ( 𝑆 ∨ 𝑑 ) ) ) |
62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → ( ( 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ∧ ( 𝑐 ∨ 𝑑 ) ≤ ( 𝑆 ∨ 𝑑 ) ) → 𝐶 ≤ ( 𝑆 ∨ 𝑑 ) ) ) |
63 |
15 55 62
|
mp2and |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐶 ≤ ( 𝑆 ∨ 𝑑 ) ) |
64 |
1 7
|
dalemyeb |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
65 |
64
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
66 |
25 2 6
|
latmlem1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 ∨ 𝑑 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐶 ≤ ( 𝑆 ∨ 𝑑 ) → ( 𝐶 ∧ 𝑌 ) ≤ ( ( 𝑆 ∨ 𝑑 ) ∧ 𝑌 ) ) ) |
67 |
18 57 51 65 66
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐶 ≤ ( 𝑆 ∨ 𝑑 ) → ( 𝐶 ∧ 𝑌 ) ≤ ( ( 𝑆 ∨ 𝑑 ) ∧ 𝑌 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝐶 ≤ ( 𝑆 ∨ 𝑑 ) → ( 𝐶 ∧ 𝑌 ) ≤ ( ( 𝑆 ∨ 𝑑 ) ∧ 𝑌 ) ) ) |
69 |
63 68
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝐶 ∧ 𝑌 ) ≤ ( ( 𝑆 ∨ 𝑑 ) ∧ 𝑌 ) ) |
70 |
1 2 3 4 7 8 9
|
dalem17 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → 𝐶 ≤ 𝑌 ) |
71 |
70
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐶 ≤ 𝑌 ) |
72 |
25 2 6
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 ≤ 𝑌 ↔ ( 𝐶 ∧ 𝑌 ) = 𝐶 ) ) |
73 |
18 57 65 72
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐶 ≤ 𝑌 ↔ ( 𝐶 ∧ 𝑌 ) = 𝐶 ) ) |
74 |
71 73
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐶 ∧ 𝑌 ) = 𝐶 ) |
75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝐶 ∧ 𝑌 ) = 𝐶 ) |
76 |
1 2 3 4 9
|
dalemsly |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → 𝑆 ≤ 𝑌 ) |
77 |
76
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑆 ≤ 𝑌 ) |
78 |
5
|
dalem-ddly |
⊢ ( 𝜓 → ¬ 𝑑 ≤ 𝑌 ) |
79 |
78
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝑑 ≤ 𝑌 ) |
80 |
25 2 3 6 4
|
2atjm |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ≤ 𝑌 ∧ ¬ 𝑑 ≤ 𝑌 ) ) → ( ( 𝑆 ∨ 𝑑 ) ∧ 𝑌 ) = 𝑆 ) |
81 |
20 31 29 65 77 79 80
|
syl132anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑆 ∨ 𝑑 ) ∧ 𝑌 ) = 𝑆 ) |
82 |
81
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → ( ( 𝑆 ∨ 𝑑 ) ∧ 𝑌 ) = 𝑆 ) |
83 |
69 75 82
|
3brtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐶 ≤ 𝑆 ) |
84 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
85 |
19 84
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ AtLat ) |
86 |
1 2 3 4 7 8
|
dalemcea |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
87 |
2 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝐶 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝐶 ≤ 𝑆 ↔ 𝐶 = 𝑆 ) ) |
88 |
85 86 30 87
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ≤ 𝑆 ↔ 𝐶 = 𝑆 ) ) |
89 |
88
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐶 ≤ 𝑆 ↔ 𝐶 = 𝑆 ) ) |
90 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝐶 ≤ 𝑆 ↔ 𝐶 = 𝑆 ) ) |
91 |
83 90
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐶 = 𝑆 ) |
92 |
91
|
ex |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 = 𝐺 → 𝐶 = 𝑆 ) ) |
93 |
92
|
necon3d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐶 ≠ 𝑆 → 𝑐 ≠ 𝐺 ) ) |
94 |
12 93
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ≠ 𝐺 ) |