Metamath Proof Explorer


Theorem dalem25

Description: Lemma for dath . Show that the dummy center of perspectivity c is different from auxiliary atom G . (Contributed by NM, 3-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
dalem23.m = ( meet ‘ 𝐾 )
dalem23.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem23.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem23.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem23.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
Assertion dalem25 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐𝐺 )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 dalem23.m = ( meet ‘ 𝐾 )
7 dalem23.o 𝑂 = ( LPlanes ‘ 𝐾 )
8 dalem23.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
9 dalem23.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
10 dalem23.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
11 1 2 3 4 dalemcnes ( 𝜑𝐶𝑆 )
12 11 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐶𝑆 )
13 5 dalemclccjdd ( 𝜓𝐶 ( 𝑐 𝑑 ) )
14 13 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐶 ( 𝑐 𝑑 ) )
15 14 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐶 ( 𝑐 𝑑 ) )
16 simpr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝑐 = 𝐺 )
17 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
18 17 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ Lat )
19 1 dalemkehl ( 𝜑𝐾 ∈ HL )
20 19 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ HL )
21 5 dalemccea ( 𝜓𝑐𝐴 )
22 21 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐𝐴 )
23 1 dalempea ( 𝜑𝑃𝐴 )
24 23 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑃𝐴 )
25 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
26 25 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑐𝐴𝑃𝐴 ) → ( 𝑐 𝑃 ) ∈ ( Base ‘ 𝐾 ) )
27 20 22 24 26 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝑃 ) ∈ ( Base ‘ 𝐾 ) )
28 5 dalemddea ( 𝜓𝑑𝐴 )
29 28 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑑𝐴 )
30 1 dalemsea ( 𝜑𝑆𝐴 )
31 30 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑆𝐴 )
32 25 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴 ) → ( 𝑑 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
33 20 29 31 32 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑑 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
34 25 2 6 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑐 𝑃 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑑 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) ) ( 𝑑 𝑆 ) )
35 18 27 33 34 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) ) ( 𝑑 𝑆 ) )
36 10 35 eqbrtrid ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺 ( 𝑑 𝑆 ) )
37 3 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑑𝐴𝑆𝐴 ) → ( 𝑑 𝑆 ) = ( 𝑆 𝑑 ) )
38 20 29 31 37 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑑 𝑆 ) = ( 𝑆 𝑑 ) )
39 36 38 breqtrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺 ( 𝑆 𝑑 ) )
40 39 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐺 ( 𝑆 𝑑 ) )
41 16 40 eqbrtrd ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝑐 ( 𝑆 𝑑 ) )
42 2 3 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑆𝐴𝑑𝐴 ) → 𝑑 ( 𝑆 𝑑 ) )
43 20 31 29 42 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑑 ( 𝑆 𝑑 ) )
44 43 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝑑 ( 𝑆 𝑑 ) )
45 5 4 dalemcceb ( 𝜓𝑐 ∈ ( Base ‘ 𝐾 ) )
46 45 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐 ∈ ( Base ‘ 𝐾 ) )
47 25 4 atbase ( 𝑑𝐴𝑑 ∈ ( Base ‘ 𝐾 ) )
48 28 47 syl ( 𝜓𝑑 ∈ ( Base ‘ 𝐾 ) )
49 48 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑑 ∈ ( Base ‘ 𝐾 ) )
50 25 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑆𝐴𝑑𝐴 ) → ( 𝑆 𝑑 ) ∈ ( Base ‘ 𝐾 ) )
51 20 31 29 50 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑆 𝑑 ) ∈ ( Base ‘ 𝐾 ) )
52 25 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ 𝑑 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑐 ( 𝑆 𝑑 ) ∧ 𝑑 ( 𝑆 𝑑 ) ) ↔ ( 𝑐 𝑑 ) ( 𝑆 𝑑 ) ) )
53 18 46 49 51 52 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑐 ( 𝑆 𝑑 ) ∧ 𝑑 ( 𝑆 𝑑 ) ) ↔ ( 𝑐 𝑑 ) ( 𝑆 𝑑 ) ) )
54 53 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → ( ( 𝑐 ( 𝑆 𝑑 ) ∧ 𝑑 ( 𝑆 𝑑 ) ) ↔ ( 𝑐 𝑑 ) ( 𝑆 𝑑 ) ) )
55 41 44 54 mpbi2and ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝑐 𝑑 ) ( 𝑆 𝑑 ) )
56 1 4 dalemceb ( 𝜑𝐶 ∈ ( Base ‘ 𝐾 ) )
57 56 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐶 ∈ ( Base ‘ 𝐾 ) )
58 25 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑐𝐴𝑑𝐴 ) → ( 𝑐 𝑑 ) ∈ ( Base ‘ 𝐾 ) )
59 20 22 29 58 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝑑 ) ∈ ( Base ‘ 𝐾 ) )
60 25 2 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 𝑑 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 𝑑 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐶 ( 𝑐 𝑑 ) ∧ ( 𝑐 𝑑 ) ( 𝑆 𝑑 ) ) → 𝐶 ( 𝑆 𝑑 ) ) )
61 18 57 59 51 60 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐶 ( 𝑐 𝑑 ) ∧ ( 𝑐 𝑑 ) ( 𝑆 𝑑 ) ) → 𝐶 ( 𝑆 𝑑 ) ) )
62 61 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → ( ( 𝐶 ( 𝑐 𝑑 ) ∧ ( 𝑐 𝑑 ) ( 𝑆 𝑑 ) ) → 𝐶 ( 𝑆 𝑑 ) ) )
63 15 55 62 mp2and ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐶 ( 𝑆 𝑑 ) )
64 1 7 dalemyeb ( 𝜑𝑌 ∈ ( Base ‘ 𝐾 ) )
65 64 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) )
66 25 2 6 latmlem1 ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 𝑑 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐶 ( 𝑆 𝑑 ) → ( 𝐶 𝑌 ) ( ( 𝑆 𝑑 ) 𝑌 ) ) )
67 18 57 51 65 66 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐶 ( 𝑆 𝑑 ) → ( 𝐶 𝑌 ) ( ( 𝑆 𝑑 ) 𝑌 ) ) )
68 67 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝐶 ( 𝑆 𝑑 ) → ( 𝐶 𝑌 ) ( ( 𝑆 𝑑 ) 𝑌 ) ) )
69 63 68 mpd ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝐶 𝑌 ) ( ( 𝑆 𝑑 ) 𝑌 ) )
70 1 2 3 4 7 8 9 dalem17 ( ( 𝜑𝑌 = 𝑍 ) → 𝐶 𝑌 )
71 70 3adant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐶 𝑌 )
72 25 2 6 latleeqm1 ( ( 𝐾 ∈ Lat ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐶 𝑌 ↔ ( 𝐶 𝑌 ) = 𝐶 ) )
73 18 57 65 72 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐶 𝑌 ↔ ( 𝐶 𝑌 ) = 𝐶 ) )
74 71 73 mpbid ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐶 𝑌 ) = 𝐶 )
75 74 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝐶 𝑌 ) = 𝐶 )
76 1 2 3 4 9 dalemsly ( ( 𝜑𝑌 = 𝑍 ) → 𝑆 𝑌 )
77 76 3adant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑆 𝑌 )
78 5 dalem-ddly ( 𝜓 → ¬ 𝑑 𝑌 )
79 78 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝑑 𝑌 )
80 25 2 3 6 4 2atjm ( ( 𝐾 ∈ HL ∧ ( 𝑆𝐴𝑑𝐴𝑌 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 𝑌 ∧ ¬ 𝑑 𝑌 ) ) → ( ( 𝑆 𝑑 ) 𝑌 ) = 𝑆 )
81 20 31 29 65 77 79 80 syl132anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑆 𝑑 ) 𝑌 ) = 𝑆 )
82 81 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → ( ( 𝑆 𝑑 ) 𝑌 ) = 𝑆 )
83 69 75 82 3brtr3d ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐶 𝑆 )
84 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
85 19 84 syl ( 𝜑𝐾 ∈ AtLat )
86 1 2 3 4 7 8 dalemcea ( 𝜑𝐶𝐴 )
87 2 4 atcmp ( ( 𝐾 ∈ AtLat ∧ 𝐶𝐴𝑆𝐴 ) → ( 𝐶 𝑆𝐶 = 𝑆 ) )
88 85 86 30 87 syl3anc ( 𝜑 → ( 𝐶 𝑆𝐶 = 𝑆 ) )
89 88 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐶 𝑆𝐶 = 𝑆 ) )
90 89 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → ( 𝐶 𝑆𝐶 = 𝑆 ) )
91 83 90 mpbid ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝑐 = 𝐺 ) → 𝐶 = 𝑆 )
92 91 ex ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 = 𝐺𝐶 = 𝑆 ) )
93 92 necon3d ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐶𝑆𝑐𝐺 ) )
94 12 93 mpd ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐𝐺 )