Metamath Proof Explorer


Theorem dalem3

Description: Lemma for dalemdnee . (Contributed by NM, 10-Aug-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem3.m = ( meet ‘ 𝐾 )
dalem3.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem3.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem3.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem3.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
dalem3.e 𝐸 = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) )
Assertion dalem3 ( ( 𝜑𝐷𝑄 ) → 𝐷𝐸 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem3.m = ( meet ‘ 𝐾 )
6 dalem3.o 𝑂 = ( LPlanes ‘ 𝐾 )
7 dalem3.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
8 dalem3.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
9 dalem3.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
10 dalem3.e 𝐸 = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) )
11 1 dalemkehl ( 𝜑𝐾 ∈ HL )
12 1 dalempea ( 𝜑𝑃𝐴 )
13 1 dalemqea ( 𝜑𝑄𝐴 )
14 1 dalemrea ( 𝜑𝑅𝐴 )
15 1 dalemyeo ( 𝜑𝑌𝑂 )
16 2 3 4 6 7 lplnric ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑌𝑂 ) → ¬ 𝑅 ( 𝑃 𝑄 ) )
17 11 12 13 14 15 16 syl131anc ( 𝜑 → ¬ 𝑅 ( 𝑃 𝑄 ) )
18 17 adantr ( ( 𝜑𝐷𝑄 ) → ¬ 𝑅 ( 𝑃 𝑄 ) )
19 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
20 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
21 20 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
22 11 13 14 21 syl3anc ( 𝜑 → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
23 1 3 4 dalemtjueb ( 𝜑 → ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
24 20 2 5 latmle1 ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( 𝑄 𝑅 ) )
25 19 22 23 24 syl3anc ( 𝜑 → ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) ) ( 𝑄 𝑅 ) )
26 10 25 eqbrtrid ( 𝜑𝐸 ( 𝑄 𝑅 ) )
27 breq1 ( 𝐷 = 𝐸 → ( 𝐷 ( 𝑄 𝑅 ) ↔ 𝐸 ( 𝑄 𝑅 ) ) )
28 26 27 syl5ibrcom ( 𝜑 → ( 𝐷 = 𝐸𝐷 ( 𝑄 𝑅 ) ) )
29 28 adantr ( ( 𝜑𝐷𝑄 ) → ( 𝐷 = 𝐸𝐷 ( 𝑄 𝑅 ) ) )
30 11 adantr ( ( 𝜑𝐷𝑄 ) → 𝐾 ∈ HL )
31 1 2 3 4 5 6 7 8 9 dalemdea ( 𝜑𝐷𝐴 )
32 31 adantr ( ( 𝜑𝐷𝑄 ) → 𝐷𝐴 )
33 14 adantr ( ( 𝜑𝐷𝑄 ) → 𝑅𝐴 )
34 13 adantr ( ( 𝜑𝐷𝑄 ) → 𝑄𝐴 )
35 simpr ( ( 𝜑𝐷𝑄 ) → 𝐷𝑄 )
36 2 3 4 hlatexch1 ( ( 𝐾 ∈ HL ∧ ( 𝐷𝐴𝑅𝐴𝑄𝐴 ) ∧ 𝐷𝑄 ) → ( 𝐷 ( 𝑄 𝑅 ) → 𝑅 ( 𝑄 𝐷 ) ) )
37 30 32 33 34 35 36 syl131anc ( ( 𝜑𝐷𝑄 ) → ( 𝐷 ( 𝑄 𝑅 ) → 𝑅 ( 𝑄 𝐷 ) ) )
38 2 3 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → 𝑄 ( 𝑃 𝑄 ) )
39 11 12 13 38 syl3anc ( 𝜑𝑄 ( 𝑃 𝑄 ) )
40 1 3 4 dalempjqeb ( 𝜑 → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
41 1 3 4 dalemsjteb ( 𝜑 → ( 𝑆 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
42 20 2 5 latmle1 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) ) ( 𝑃 𝑄 ) )
43 19 40 41 42 syl3anc ( 𝜑 → ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) ) ( 𝑃 𝑄 ) )
44 9 43 eqbrtrid ( 𝜑𝐷 ( 𝑃 𝑄 ) )
45 1 4 dalemqeb ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) )
46 20 4 atbase ( 𝐷𝐴𝐷 ∈ ( Base ‘ 𝐾 ) )
47 31 46 syl ( 𝜑𝐷 ∈ ( Base ‘ 𝐾 ) )
48 20 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝐷 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ( 𝑃 𝑄 ) ∧ 𝐷 ( 𝑃 𝑄 ) ) ↔ ( 𝑄 𝐷 ) ( 𝑃 𝑄 ) ) )
49 19 45 47 40 48 syl13anc ( 𝜑 → ( ( 𝑄 ( 𝑃 𝑄 ) ∧ 𝐷 ( 𝑃 𝑄 ) ) ↔ ( 𝑄 𝐷 ) ( 𝑃 𝑄 ) ) )
50 39 44 49 mpbi2and ( 𝜑 → ( 𝑄 𝐷 ) ( 𝑃 𝑄 ) )
51 1 4 dalemreb ( 𝜑𝑅 ∈ ( Base ‘ 𝐾 ) )
52 20 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝐷𝐴 ) → ( 𝑄 𝐷 ) ∈ ( Base ‘ 𝐾 ) )
53 11 13 31 52 syl3anc ( 𝜑 → ( 𝑄 𝐷 ) ∈ ( Base ‘ 𝐾 ) )
54 20 2 lattr ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝐷 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ( 𝑄 𝐷 ) ∧ ( 𝑄 𝐷 ) ( 𝑃 𝑄 ) ) → 𝑅 ( 𝑃 𝑄 ) ) )
55 19 51 53 40 54 syl13anc ( 𝜑 → ( ( 𝑅 ( 𝑄 𝐷 ) ∧ ( 𝑄 𝐷 ) ( 𝑃 𝑄 ) ) → 𝑅 ( 𝑃 𝑄 ) ) )
56 50 55 mpan2d ( 𝜑 → ( 𝑅 ( 𝑄 𝐷 ) → 𝑅 ( 𝑃 𝑄 ) ) )
57 56 adantr ( ( 𝜑𝐷𝑄 ) → ( 𝑅 ( 𝑄 𝐷 ) → 𝑅 ( 𝑃 𝑄 ) ) )
58 29 37 57 3syld ( ( 𝜑𝐷𝑄 ) → ( 𝐷 = 𝐸𝑅 ( 𝑃 𝑄 ) ) )
59 58 necon3bd ( ( 𝜑𝐷𝑄 ) → ( ¬ 𝑅 ( 𝑃 𝑄 ) → 𝐷𝐸 ) )
60 18 59 mpd ( ( 𝜑𝐷𝑄 ) → 𝐷𝐸 )