Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dalem3.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
7 |
|
dalem3.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
8 |
|
dalem3.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
9 |
|
dalem3.d |
⊢ 𝐷 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) |
10 |
|
dalem3.e |
⊢ 𝐸 = ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) |
11 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
12 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
13 |
1
|
dalemqea |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
14 |
1
|
dalemrea |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
15 |
1
|
dalemyeo |
⊢ ( 𝜑 → 𝑌 ∈ 𝑂 ) |
16 |
2 3 4 6 7
|
lplnric |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑂 ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
17 |
11 12 13 14 15 16
|
syl131anc |
⊢ ( 𝜑 → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
19 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
21 |
20 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
11 13 14 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
1 3 4
|
dalemtjueb |
⊢ ( 𝜑 → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
20 2 5
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ) |
25 |
19 22 23 24
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) ≤ ( 𝑄 ∨ 𝑅 ) ) |
26 |
10 25
|
eqbrtrid |
⊢ ( 𝜑 → 𝐸 ≤ ( 𝑄 ∨ 𝑅 ) ) |
27 |
|
breq1 |
⊢ ( 𝐷 = 𝐸 → ( 𝐷 ≤ ( 𝑄 ∨ 𝑅 ) ↔ 𝐸 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
28 |
26 27
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐷 = 𝐸 → 𝐷 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → ( 𝐷 = 𝐸 → 𝐷 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
30 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → 𝐾 ∈ HL ) |
31 |
1 2 3 4 5 6 7 8 9
|
dalemdea |
⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → 𝐷 ∈ 𝐴 ) |
33 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → 𝑅 ∈ 𝐴 ) |
34 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → 𝑄 ∈ 𝐴 ) |
35 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → 𝐷 ≠ 𝑄 ) |
36 |
2 3 4
|
hlatexch1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐷 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝐷 ≠ 𝑄 ) → ( 𝐷 ≤ ( 𝑄 ∨ 𝑅 ) → 𝑅 ≤ ( 𝑄 ∨ 𝐷 ) ) ) |
37 |
30 32 33 34 35 36
|
syl131anc |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → ( 𝐷 ≤ ( 𝑄 ∨ 𝑅 ) → 𝑅 ≤ ( 𝑄 ∨ 𝐷 ) ) ) |
38 |
2 3 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
39 |
11 12 13 38
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
40 |
1 3 4
|
dalempjqeb |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
41 |
1 3 4
|
dalemsjteb |
⊢ ( 𝜑 → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
42 |
20 2 5
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
43 |
19 40 41 42
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
44 |
9 43
|
eqbrtrid |
⊢ ( 𝜑 → 𝐷 ≤ ( 𝑃 ∨ 𝑄 ) ) |
45 |
1 4
|
dalemqeb |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
46 |
20 4
|
atbase |
⊢ ( 𝐷 ∈ 𝐴 → 𝐷 ∈ ( Base ‘ 𝐾 ) ) |
47 |
31 46
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Base ‘ 𝐾 ) ) |
48 |
20 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝐷 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐷 ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ ( 𝑄 ∨ 𝐷 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
49 |
19 45 47 40 48
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐷 ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ ( 𝑄 ∨ 𝐷 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
50 |
39 44 49
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝐷 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
51 |
1 4
|
dalemreb |
⊢ ( 𝜑 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
52 |
20 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴 ) → ( 𝑄 ∨ 𝐷 ) ∈ ( Base ‘ 𝐾 ) ) |
53 |
11 13 31 52
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝐷 ) ∈ ( Base ‘ 𝐾 ) ) |
54 |
20 2
|
lattr |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝐷 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑅 ≤ ( 𝑄 ∨ 𝐷 ) ∧ ( 𝑄 ∨ 𝐷 ) ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
55 |
19 51 53 40 54
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑅 ≤ ( 𝑄 ∨ 𝐷 ) ∧ ( 𝑄 ∨ 𝐷 ) ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
56 |
50 55
|
mpan2d |
⊢ ( 𝜑 → ( 𝑅 ≤ ( 𝑄 ∨ 𝐷 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → ( 𝑅 ≤ ( 𝑄 ∨ 𝐷 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
58 |
29 37 57
|
3syld |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → ( 𝐷 = 𝐸 → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
59 |
58
|
necon3bd |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → ( ¬ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) → 𝐷 ≠ 𝐸 ) ) |
60 |
18 59
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑄 ) → 𝐷 ≠ 𝐸 ) |