Metamath Proof Explorer


Theorem dalem38

Description: Lemma for dath . Plane Y belongs to the 3-dimensional volume G H I c . (Contributed by NM, 5-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
dalem38.m = ( meet ‘ 𝐾 )
dalem38.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem38.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem38.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem38.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
dalem38.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
dalem38.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
Assertion dalem38 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌 ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 dalem38.m = ( meet ‘ 𝐾 )
7 dalem38.o 𝑂 = ( LPlanes ‘ 𝐾 )
8 dalem38.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
9 dalem38.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
10 dalem38.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
11 dalem38.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
12 dalem38.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
13 1 2 3 4 5 6 7 8 9 10 dalem28 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑃 ( 𝐺 𝑐 ) )
14 1 2 3 4 5 6 7 8 9 11 dalem33 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑄 ( 𝐻 𝑐 ) )
15 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
16 15 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ Lat )
17 1 4 dalempeb ( 𝜑𝑃 ∈ ( Base ‘ 𝐾 ) )
18 17 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
19 1 dalemkehl ( 𝜑𝐾 ∈ HL )
20 19 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ HL )
21 1 2 3 4 5 6 7 8 9 10 dalem23 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺𝐴 )
22 5 dalemccea ( 𝜓𝑐𝐴 )
23 22 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐𝐴 )
24 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
25 24 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐺𝐴𝑐𝐴 ) → ( 𝐺 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
26 20 21 23 25 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐺 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
27 1 4 dalemqeb ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) )
28 27 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
29 1 2 3 4 5 6 7 8 9 11 dalem29 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐻𝐴 )
30 24 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐻𝐴𝑐𝐴 ) → ( 𝐻 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
31 20 29 23 30 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐻 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
32 24 2 3 latjlej12 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 𝑐 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐻 𝑐 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ( 𝐺 𝑐 ) ∧ 𝑄 ( 𝐻 𝑐 ) ) → ( 𝑃 𝑄 ) ( ( 𝐺 𝑐 ) ( 𝐻 𝑐 ) ) ) )
33 16 18 26 28 31 32 syl122anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑃 ( 𝐺 𝑐 ) ∧ 𝑄 ( 𝐻 𝑐 ) ) → ( 𝑃 𝑄 ) ( ( 𝐺 𝑐 ) ( 𝐻 𝑐 ) ) ) )
34 13 14 33 mp2and ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑃 𝑄 ) ( ( 𝐺 𝑐 ) ( 𝐻 𝑐 ) ) )
35 24 4 atbase ( 𝐺𝐴𝐺 ∈ ( Base ‘ 𝐾 ) )
36 21 35 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺 ∈ ( Base ‘ 𝐾 ) )
37 24 4 atbase ( 𝐻𝐴𝐻 ∈ ( Base ‘ 𝐾 ) )
38 29 37 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐻 ∈ ( Base ‘ 𝐾 ) )
39 5 4 dalemcceb ( 𝜓𝑐 ∈ ( Base ‘ 𝐾 ) )
40 39 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐 ∈ ( Base ‘ 𝐾 ) )
41 24 3 latjjdir ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ∈ ( Base ‘ 𝐾 ) ∧ 𝐻 ∈ ( Base ‘ 𝐾 ) ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐺 𝐻 ) 𝑐 ) = ( ( 𝐺 𝑐 ) ( 𝐻 𝑐 ) ) )
42 16 36 38 40 41 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝑐 ) = ( ( 𝐺 𝑐 ) ( 𝐻 𝑐 ) ) )
43 34 42 breqtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑃 𝑄 ) ( ( 𝐺 𝐻 ) 𝑐 ) )
44 1 2 3 4 5 6 7 8 9 12 dalem37 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑅 ( 𝐼 𝑐 ) )
45 1 3 4 dalempjqeb ( 𝜑 → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
46 45 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
47 24 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
48 20 21 29 47 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
49 24 3 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 𝐻 ) 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
50 16 48 40 49 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
51 1 4 dalemreb ( 𝜑𝑅 ∈ ( Base ‘ 𝐾 ) )
52 51 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑅 ∈ ( Base ‘ 𝐾 ) )
53 1 2 3 4 5 6 7 8 9 12 dalem34 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼𝐴 )
54 24 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐼𝐴𝑐𝐴 ) → ( 𝐼 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
55 20 53 23 54 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐼 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
56 24 2 3 latjlej12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐺 𝐻 ) 𝑐 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐼 𝑐 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 𝑄 ) ( ( 𝐺 𝐻 ) 𝑐 ) ∧ 𝑅 ( 𝐼 𝑐 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( ( ( 𝐺 𝐻 ) 𝑐 ) ( 𝐼 𝑐 ) ) ) )
57 16 46 50 52 55 56 syl122anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( 𝑃 𝑄 ) ( ( 𝐺 𝐻 ) 𝑐 ) ∧ 𝑅 ( 𝐼 𝑐 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( ( ( 𝐺 𝐻 ) 𝑐 ) ( 𝐼 𝑐 ) ) ) )
58 43 44 57 mp2and ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( ( ( 𝐺 𝐻 ) 𝑐 ) ( 𝐼 𝑐 ) ) )
59 24 4 atbase ( 𝐼𝐴𝐼 ∈ ( Base ‘ 𝐾 ) )
60 53 59 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼 ∈ ( Base ‘ 𝐾 ) )
61 24 3 latjjdir ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐼 ∈ ( Base ‘ 𝐾 ) ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) = ( ( ( 𝐺 𝐻 ) 𝑐 ) ( 𝐼 𝑐 ) ) )
62 16 48 60 40 61 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) = ( ( ( 𝐺 𝐻 ) 𝑐 ) ( 𝐼 𝑐 ) ) )
63 58 62 breqtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) )
64 8 63 eqbrtrid ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌 ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) )