Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem.ps |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
6 |
|
dalem38.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
7 |
|
dalem38.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
8 |
|
dalem38.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
9 |
|
dalem38.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
10 |
|
dalem38.g |
⊢ 𝐺 = ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) |
11 |
|
dalem38.h |
⊢ 𝐻 = ( ( 𝑐 ∨ 𝑄 ) ∧ ( 𝑑 ∨ 𝑇 ) ) |
12 |
|
dalem38.i |
⊢ 𝐼 = ( ( 𝑐 ∨ 𝑅 ) ∧ ( 𝑑 ∨ 𝑈 ) ) |
13 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ HL ) |
15 |
1
|
dalemyeo |
⊢ ( 𝜑 → 𝑌 ∈ 𝑂 ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 ∈ 𝑂 ) |
17 |
5
|
dalemccea |
⊢ ( 𝜓 → 𝑐 ∈ 𝐴 ) |
18 |
17
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ∈ 𝐴 ) |
19 |
5
|
dalem-ccly |
⊢ ( 𝜓 → ¬ 𝑐 ≤ 𝑌 ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝑐 ≤ 𝑌 ) |
21 |
|
eqid |
⊢ ( LVols ‘ 𝐾 ) = ( LVols ‘ 𝐾 ) |
22 |
2 3 4 7 21
|
lvoli3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑂 ∧ 𝑐 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ) → ( 𝑌 ∨ 𝑐 ) ∈ ( LVols ‘ 𝐾 ) ) |
23 |
14 16 18 20 22
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑌 ∨ 𝑐 ) ∈ ( LVols ‘ 𝐾 ) ) |
24 |
1 2 3 4 5 6 7 8 9 12
|
dalem34 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐼 ∈ 𝐴 ) |
25 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 ∈ 𝐴 ) |
26 |
2 3 4 21
|
lvolnle3at |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑌 ∨ 𝑐 ) ∈ ( LVols ‘ 𝐾 ) ) ∧ ( 𝐼 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) → ¬ ( 𝑌 ∨ 𝑐 ) ≤ ( ( 𝐼 ∨ 𝐺 ) ∨ 𝑐 ) ) |
27 |
14 23 24 25 18 26
|
syl23anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ ( 𝑌 ∨ 𝑐 ) ≤ ( ( 𝐼 ∨ 𝐺 ) ∨ 𝑐 ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem38 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ) |
29 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ Lat ) |
31 |
1 2 3 4 5 6 7 8 9 11
|
dalem29 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐻 ∈ 𝐴 ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
33 |
32 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ) → ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
14 25 31 33
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
32 4
|
atbase |
⊢ ( 𝐼 ∈ 𝐴 → 𝐼 ∈ ( Base ‘ 𝐾 ) ) |
36 |
24 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐼 ∈ ( Base ‘ 𝐾 ) ) |
37 |
32 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐼 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
38 |
30 34 36 37
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
39 |
5 4
|
dalemcceb |
⊢ ( 𝜓 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
40 |
39
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
41 |
32 2 3
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) → 𝑐 ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ) |
42 |
30 38 40 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ) |
43 |
1 7
|
dalemyeb |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
45 |
32 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ∈ ( Base ‘ 𝐾 ) ) |
46 |
30 38 40 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
32 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑌 ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ∧ 𝑐 ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ) ↔ ( 𝑌 ∨ 𝑐 ) ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ) ) |
48 |
30 44 40 46 47
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑌 ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ∧ 𝑐 ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ) ↔ ( 𝑌 ∨ 𝑐 ) ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ) ) |
49 |
28 42 48
|
mpbi2and |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑌 ∨ 𝑐 ) ≤ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) ) |
50 |
3 4
|
hlatjrot |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) = ( ( 𝐼 ∨ 𝐺 ) ∨ 𝐻 ) ) |
51 |
14 25 31 24 50
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) = ( ( 𝐼 ∨ 𝐺 ) ∨ 𝐻 ) ) |
52 |
51
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∨ 𝑐 ) = ( ( ( 𝐼 ∨ 𝐺 ) ∨ 𝐻 ) ∨ 𝑐 ) ) |
53 |
49 52
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑌 ∨ 𝑐 ) ≤ ( ( ( 𝐼 ∨ 𝐺 ) ∨ 𝐻 ) ∨ 𝑐 ) ) |
54 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝐻 ≤ ( 𝐼 ∨ 𝐺 ) ) → ( 𝑌 ∨ 𝑐 ) ≤ ( ( ( 𝐼 ∨ 𝐺 ) ∨ 𝐻 ) ∨ 𝑐 ) ) |
55 |
32 4
|
atbase |
⊢ ( 𝐻 ∈ 𝐴 → 𝐻 ∈ ( Base ‘ 𝐾 ) ) |
56 |
31 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐻 ∈ ( Base ‘ 𝐾 ) ) |
57 |
32 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝐼 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) → ( 𝐼 ∨ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
58 |
14 24 25 57
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐼 ∨ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
59 |
32 2 3
|
latleeqj2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐻 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐼 ∨ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐻 ≤ ( 𝐼 ∨ 𝐺 ) ↔ ( ( 𝐼 ∨ 𝐺 ) ∨ 𝐻 ) = ( 𝐼 ∨ 𝐺 ) ) ) |
60 |
30 56 58 59
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐻 ≤ ( 𝐼 ∨ 𝐺 ) ↔ ( ( 𝐼 ∨ 𝐺 ) ∨ 𝐻 ) = ( 𝐼 ∨ 𝐺 ) ) ) |
61 |
60
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝐻 ≤ ( 𝐼 ∨ 𝐺 ) ) → ( ( 𝐼 ∨ 𝐺 ) ∨ 𝐻 ) = ( 𝐼 ∨ 𝐺 ) ) |
62 |
61
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝐻 ≤ ( 𝐼 ∨ 𝐺 ) ) → ( ( ( 𝐼 ∨ 𝐺 ) ∨ 𝐻 ) ∨ 𝑐 ) = ( ( 𝐼 ∨ 𝐺 ) ∨ 𝑐 ) ) |
63 |
54 62
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) ∧ 𝐻 ≤ ( 𝐼 ∨ 𝐺 ) ) → ( 𝑌 ∨ 𝑐 ) ≤ ( ( 𝐼 ∨ 𝐺 ) ∨ 𝑐 ) ) |
64 |
27 63
|
mtand |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝐻 ≤ ( 𝐼 ∨ 𝐺 ) ) |