Metamath Proof Explorer


Theorem dalem39

Description: Lemma for dath . Auxiliary atoms G , H , and I are not colinear. (Contributed by NM, 4-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
dalem38.m = ( meet ‘ 𝐾 )
dalem38.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem38.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem38.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem38.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
dalem38.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
dalem38.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
Assertion dalem39 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝐻 ( 𝐼 𝐺 ) )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 dalem38.m = ( meet ‘ 𝐾 )
7 dalem38.o 𝑂 = ( LPlanes ‘ 𝐾 )
8 dalem38.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
9 dalem38.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
10 dalem38.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
11 dalem38.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
12 dalem38.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
13 1 dalemkehl ( 𝜑𝐾 ∈ HL )
14 13 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ HL )
15 1 dalemyeo ( 𝜑𝑌𝑂 )
16 15 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌𝑂 )
17 5 dalemccea ( 𝜓𝑐𝐴 )
18 17 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐𝐴 )
19 5 dalem-ccly ( 𝜓 → ¬ 𝑐 𝑌 )
20 19 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝑐 𝑌 )
21 eqid ( LVols ‘ 𝐾 ) = ( LVols ‘ 𝐾 )
22 2 3 4 7 21 lvoli3 ( ( ( 𝐾 ∈ HL ∧ 𝑌𝑂𝑐𝐴 ) ∧ ¬ 𝑐 𝑌 ) → ( 𝑌 𝑐 ) ∈ ( LVols ‘ 𝐾 ) )
23 14 16 18 20 22 syl31anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑌 𝑐 ) ∈ ( LVols ‘ 𝐾 ) )
24 1 2 3 4 5 6 7 8 9 12 dalem34 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼𝐴 )
25 1 2 3 4 5 6 7 8 9 10 dalem23 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺𝐴 )
26 2 3 4 21 lvolnle3at ( ( ( 𝐾 ∈ HL ∧ ( 𝑌 𝑐 ) ∈ ( LVols ‘ 𝐾 ) ) ∧ ( 𝐼𝐴𝐺𝐴𝑐𝐴 ) ) → ¬ ( 𝑌 𝑐 ) ( ( 𝐼 𝐺 ) 𝑐 ) )
27 14 23 24 25 18 26 syl23anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ ( 𝑌 𝑐 ) ( ( 𝐼 𝐺 ) 𝑐 ) )
28 1 2 3 4 5 6 7 8 9 10 11 12 dalem38 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌 ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) )
29 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
30 29 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ Lat )
31 1 2 3 4 5 6 7 8 9 11 dalem29 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐻𝐴 )
32 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
33 32 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
34 14 25 31 33 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
35 32 4 atbase ( 𝐼𝐴𝐼 ∈ ( Base ‘ 𝐾 ) )
36 24 35 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼 ∈ ( Base ‘ 𝐾 ) )
37 32 3 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐼 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) )
38 30 34 36 37 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) )
39 5 4 dalemcceb ( 𝜓𝑐 ∈ ( Base ‘ 𝐾 ) )
40 39 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐 ∈ ( Base ‘ 𝐾 ) )
41 32 2 3 latlej2 ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) → 𝑐 ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) )
42 30 38 40 41 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐 ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) )
43 1 7 dalemyeb ( 𝜑𝑌 ∈ ( Base ‘ 𝐾 ) )
44 43 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) )
45 32 3 latjcl ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
46 30 38 40 45 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) ∈ ( Base ‘ 𝐾 ) )
47 32 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑌 ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) ∧ 𝑐 ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) ) ↔ ( 𝑌 𝑐 ) ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) ) )
48 30 44 40 46 47 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑌 ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) ∧ 𝑐 ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) ) ↔ ( 𝑌 𝑐 ) ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) ) )
49 28 42 48 mpbi2and ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑌 𝑐 ) ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) )
50 3 4 hlatjrot ( ( 𝐾 ∈ HL ∧ ( 𝐺𝐴𝐻𝐴𝐼𝐴 ) ) → ( ( 𝐺 𝐻 ) 𝐼 ) = ( ( 𝐼 𝐺 ) 𝐻 ) )
51 14 25 31 24 50 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐼 ) = ( ( 𝐼 𝐺 ) 𝐻 ) )
52 51 oveq1d ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑐 ) = ( ( ( 𝐼 𝐺 ) 𝐻 ) 𝑐 ) )
53 49 52 breqtrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑌 𝑐 ) ( ( ( 𝐼 𝐺 ) 𝐻 ) 𝑐 ) )
54 53 adantr ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝐻 ( 𝐼 𝐺 ) ) → ( 𝑌 𝑐 ) ( ( ( 𝐼 𝐺 ) 𝐻 ) 𝑐 ) )
55 32 4 atbase ( 𝐻𝐴𝐻 ∈ ( Base ‘ 𝐾 ) )
56 31 55 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐻 ∈ ( Base ‘ 𝐾 ) )
57 32 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐼𝐴𝐺𝐴 ) → ( 𝐼 𝐺 ) ∈ ( Base ‘ 𝐾 ) )
58 14 24 25 57 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐼 𝐺 ) ∈ ( Base ‘ 𝐾 ) )
59 32 2 3 latleeqj2 ( ( 𝐾 ∈ Lat ∧ 𝐻 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐼 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐻 ( 𝐼 𝐺 ) ↔ ( ( 𝐼 𝐺 ) 𝐻 ) = ( 𝐼 𝐺 ) ) )
60 30 56 58 59 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐻 ( 𝐼 𝐺 ) ↔ ( ( 𝐼 𝐺 ) 𝐻 ) = ( 𝐼 𝐺 ) ) )
61 60 biimpa ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝐻 ( 𝐼 𝐺 ) ) → ( ( 𝐼 𝐺 ) 𝐻 ) = ( 𝐼 𝐺 ) )
62 61 oveq1d ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝐻 ( 𝐼 𝐺 ) ) → ( ( ( 𝐼 𝐺 ) 𝐻 ) 𝑐 ) = ( ( 𝐼 𝐺 ) 𝑐 ) )
63 54 62 breqtrd ( ( ( 𝜑𝑌 = 𝑍𝜓 ) ∧ 𝐻 ( 𝐼 𝐺 ) ) → ( 𝑌 𝑐 ) ( ( 𝐼 𝐺 ) 𝑐 ) )
64 27 63 mtand ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝐻 ( 𝐼 𝐺 ) )