Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dalem3.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
7 |
|
dalem3.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
8 |
|
dalem3.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
9 |
|
dalem3.d |
⊢ 𝐷 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) |
10 |
|
dalem3.e |
⊢ 𝐸 = ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) |
11 |
1 2 3 4
|
dalemswapyz |
⊢ ( 𝜑 → ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑇 ) → ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ) |
13 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
14 |
1 3 4
|
dalempjqeb |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
1 3 4
|
dalemsjteb |
⊢ ( 𝜑 → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
17 |
16 5
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) = ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
18 |
13 14 15 17
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) = ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
19 |
9 18
|
eqtrid |
⊢ ( 𝜑 → 𝐷 = ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
20 |
19
|
neeq1d |
⊢ ( 𝜑 → ( 𝐷 ≠ 𝑇 ↔ ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≠ 𝑇 ) ) |
21 |
20
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑇 ) → ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≠ 𝑇 ) |
22 |
|
biid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ) |
23 |
|
eqid |
⊢ ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) |
24 |
|
eqid |
⊢ ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) |
25 |
22 2 3 4 5 6 8 7 23 24
|
dalem3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) ∧ ( 𝑍 ∈ 𝑂 ∧ 𝑌 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( 𝐶 ≤ ( 𝑆 ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑇 ∨ 𝑄 ) ∧ 𝐶 ≤ ( 𝑈 ∨ 𝑅 ) ) ) ) ∧ ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≠ 𝑇 ) → ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≠ ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ) |
26 |
12 21 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑇 ) → ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ≠ ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ) |
27 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑇 ) → 𝐷 = ( ( 𝑆 ∨ 𝑇 ) ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
28 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
29 |
1
|
dalemqea |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
30 |
1
|
dalemrea |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
31 |
16 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
28 29 30 31
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
33 |
1 3 4
|
dalemtjueb |
⊢ ( 𝜑 → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
16 5
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ) |
35 |
13 32 33 34
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ) |
36 |
10 35
|
eqtrid |
⊢ ( 𝜑 → 𝐸 = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑇 ) → 𝐸 = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ 𝑅 ) ) ) |
38 |
26 27 37
|
3netr4d |
⊢ ( ( 𝜑 ∧ 𝐷 ≠ 𝑇 ) → 𝐷 ≠ 𝐸 ) |