Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem.ps |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
6 |
|
dalem44.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
7 |
|
dalem44.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
8 |
|
dalem44.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
9 |
|
dalem44.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
10 |
|
dalem44.g |
⊢ 𝐺 = ( ( 𝑐 ∨ 𝑃 ) ∧ ( 𝑑 ∨ 𝑆 ) ) |
11 |
|
dalem44.h |
⊢ 𝐻 = ( ( 𝑐 ∨ 𝑄 ) ∧ ( 𝑑 ∨ 𝑇 ) ) |
12 |
|
dalem44.i |
⊢ 𝐼 = ( ( 𝑐 ∨ 𝑅 ) ∧ ( 𝑑 ∨ 𝑈 ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem43 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ≠ 𝑌 ) |
14 |
13
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 ≠ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) |
15 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ Lat ) |
17 |
5 4
|
dalemcceb |
⊢ ( 𝜓 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
18 |
17
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem42 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ 𝑂 ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
21 |
20 7
|
lplnbase |
⊢ ( ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ 𝑂 → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
19 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
20 2 3
|
latleeqj1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑐 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ↔ ( 𝑐 ∨ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) = ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
24 |
16 18 22 23
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ↔ ( 𝑐 ∨ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) = ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 10
|
dalem28 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑃 ≤ ( 𝐺 ∨ 𝑐 ) ) |
26 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ HL ) |
28 |
5
|
dalemccea |
⊢ ( 𝜓 → 𝑐 ∈ 𝐴 ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ∈ 𝐴 ) |
30 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 ∈ 𝐴 ) |
31 |
3 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) → ( 𝑐 ∨ 𝐺 ) = ( 𝐺 ∨ 𝑐 ) ) |
32 |
27 29 30 31
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝐺 ) = ( 𝐺 ∨ 𝑐 ) ) |
33 |
25 32
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑃 ≤ ( 𝑐 ∨ 𝐺 ) ) |
34 |
1 2 3 4 5 6 7 8 9 11
|
dalem33 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑄 ≤ ( 𝐻 ∨ 𝑐 ) ) |
35 |
1 2 3 4 5 6 7 8 9 11
|
dalem29 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐻 ∈ 𝐴 ) |
36 |
3 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ) → ( 𝑐 ∨ 𝐻 ) = ( 𝐻 ∨ 𝑐 ) ) |
37 |
27 29 35 36
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝐻 ) = ( 𝐻 ∨ 𝑐 ) ) |
38 |
34 37
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑄 ≤ ( 𝑐 ∨ 𝐻 ) ) |
39 |
1 4
|
dalempeb |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
40 |
39
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
41 |
20 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) → ( 𝑐 ∨ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
42 |
27 29 30 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
1 4
|
dalemqeb |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
45 |
20 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ) → ( 𝑐 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) |
46 |
27 29 35 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
20 2 3
|
latjlej12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 ∨ 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ ( 𝑐 ∨ 𝐺 ) ∧ 𝑄 ≤ ( 𝑐 ∨ 𝐻 ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑐 ∨ 𝐺 ) ∨ ( 𝑐 ∨ 𝐻 ) ) ) ) |
48 |
16 40 42 44 46 47
|
syl122anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑃 ≤ ( 𝑐 ∨ 𝐺 ) ∧ 𝑄 ≤ ( 𝑐 ∨ 𝐻 ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑐 ∨ 𝐺 ) ∨ ( 𝑐 ∨ 𝐻 ) ) ) ) |
49 |
33 38 48
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑐 ∨ 𝐺 ) ∨ ( 𝑐 ∨ 𝐻 ) ) ) |
50 |
20 4
|
atbase |
⊢ ( 𝐺 ∈ 𝐴 → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
51 |
30 50
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
52 |
20 4
|
atbase |
⊢ ( 𝐻 ∈ 𝐴 → 𝐻 ∈ ( Base ‘ 𝐾 ) ) |
53 |
35 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐻 ∈ ( Base ‘ 𝐾 ) ) |
54 |
20 3
|
latjjdi |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ 𝐺 ∈ ( Base ‘ 𝐾 ) ∧ 𝐻 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) = ( ( 𝑐 ∨ 𝐺 ) ∨ ( 𝑐 ∨ 𝐻 ) ) ) |
55 |
16 18 51 53 54
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) = ( ( 𝑐 ∨ 𝐺 ) ∨ ( 𝑐 ∨ 𝐻 ) ) ) |
56 |
49 55
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ) |
57 |
1 2 3 4 5 6 7 8 9 12
|
dalem37 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑅 ≤ ( 𝐼 ∨ 𝑐 ) ) |
58 |
1 2 3 4 5 6 7 8 9 12
|
dalem34 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐼 ∈ 𝐴 ) |
59 |
3 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) → ( 𝑐 ∨ 𝐼 ) = ( 𝐼 ∨ 𝑐 ) ) |
60 |
27 29 58 59
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝐼 ) = ( 𝐼 ∨ 𝑐 ) ) |
61 |
57 60
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑅 ≤ ( 𝑐 ∨ 𝐼 ) ) |
62 |
1 3 4
|
dalempjqeb |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
63 |
62
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
64 |
20 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ) → ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) |
65 |
27 30 35 64
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) |
66 |
20 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∈ ( Base ‘ 𝐾 ) ) |
67 |
16 18 65 66
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∈ ( Base ‘ 𝐾 ) ) |
68 |
1 4
|
dalemreb |
⊢ ( 𝜑 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
69 |
68
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
70 |
20 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴 ) → ( 𝑐 ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
71 |
27 29 58 70
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) |
72 |
20 2 3
|
latjlej12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 ∨ 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∧ 𝑅 ≤ ( 𝑐 ∨ 𝐼 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∨ ( 𝑐 ∨ 𝐼 ) ) ) ) |
73 |
16 63 67 69 71 72
|
syl122anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( ( 𝑃 ∨ 𝑄 ) ≤ ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∧ 𝑅 ≤ ( 𝑐 ∨ 𝐼 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∨ ( 𝑐 ∨ 𝐼 ) ) ) ) |
74 |
56 61 73
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∨ ( 𝑐 ∨ 𝐼 ) ) ) |
75 |
20 4
|
atbase |
⊢ ( 𝐼 ∈ 𝐴 → 𝐼 ∈ ( Base ‘ 𝐾 ) ) |
76 |
58 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐼 ∈ ( Base ‘ 𝐾 ) ) |
77 |
20 3
|
latjjdi |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ∨ 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐼 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑐 ∨ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) = ( ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∨ ( 𝑐 ∨ 𝐼 ) ) ) |
78 |
16 18 65 76 77
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) = ( ( 𝑐 ∨ ( 𝐺 ∨ 𝐻 ) ) ∨ ( 𝑐 ∨ 𝐼 ) ) ) |
79 |
74 78
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ≤ ( 𝑐 ∨ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
80 |
8 79
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 ≤ ( 𝑐 ∨ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
81 |
|
breq2 |
⊢ ( ( 𝑐 ∨ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) = ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) → ( 𝑌 ≤ ( 𝑐 ∨ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ↔ 𝑌 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
82 |
80 81
|
syl5ibcom |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑐 ∨ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) = ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) → 𝑌 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
83 |
24 82
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) → 𝑌 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
84 |
1
|
dalemyeo |
⊢ ( 𝜑 → 𝑌 ∈ 𝑂 ) |
85 |
84
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 ∈ 𝑂 ) |
86 |
2 7
|
lplncmp |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑂 ∧ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ∈ 𝑂 ) → ( 𝑌 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ↔ 𝑌 = ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
87 |
27 85 19 86
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑌 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ↔ 𝑌 = ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
88 |
83 87
|
sylibd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) → 𝑌 = ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
89 |
88
|
necon3ad |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑌 ≠ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) → ¬ 𝑐 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) ) |
90 |
14 89
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝑐 ≤ ( ( 𝐺 ∨ 𝐻 ) ∨ 𝐼 ) ) |