| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalem.ph | 
							⊢ ( 𝜑  ↔  ( ( ( 𝐾  ∈  HL  ∧  𝐶  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 ) )  ∧  ( 𝑌  ∈  𝑂  ∧  𝑍  ∈  𝑂 )  ∧  ( ( ¬  𝐶  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝐶  ≤  ( 𝑄  ∨  𝑅 )  ∧  ¬  𝐶  ≤  ( 𝑅  ∨  𝑃 ) )  ∧  ( ¬  𝐶  ≤  ( 𝑆  ∨  𝑇 )  ∧  ¬  𝐶  ≤  ( 𝑇  ∨  𝑈 )  ∧  ¬  𝐶  ≤  ( 𝑈  ∨  𝑆 ) )  ∧  ( 𝐶  ≤  ( 𝑃  ∨  𝑆 )  ∧  𝐶  ≤  ( 𝑄  ∨  𝑇 )  ∧  𝐶  ≤  ( 𝑅  ∨  𝑈 ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalem.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							dalem.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							dalem.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem.ps | 
							⊢ ( 𝜓  ↔  ( ( 𝑐  ∈  𝐴  ∧  𝑑  ∈  𝐴 )  ∧  ¬  𝑐  ≤  𝑌  ∧  ( 𝑑  ≠  𝑐  ∧  ¬  𝑑  ≤  𝑌  ∧  𝐶  ≤  ( 𝑐  ∨  𝑑 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem44.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem44.o | 
							⊢ 𝑂  =  ( LPlanes ‘ 𝐾 )  | 
						
						
							| 8 | 
							
								
							 | 
							dalem44.y | 
							⊢ 𝑌  =  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							dalem44.z | 
							⊢ 𝑍  =  ( ( 𝑆  ∨  𝑇 )  ∨  𝑈 )  | 
						
						
							| 10 | 
							
								
							 | 
							dalem44.g | 
							⊢ 𝐺  =  ( ( 𝑐  ∨  𝑃 )  ∧  ( 𝑑  ∨  𝑆 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dalem44.h | 
							⊢ 𝐻  =  ( ( 𝑐  ∨  𝑄 )  ∧  ( 𝑑  ∨  𝑇 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							dalem44.i | 
							⊢ 𝐼  =  ( ( 𝑐  ∨  𝑅 )  ∧  ( 𝑑  ∨  𝑈 ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							dalem43 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ≠  𝑌 )  | 
						
						
							| 14 | 
							
								13
							 | 
							necomd | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑌  ≠  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							dalemkelat | 
							⊢ ( 𝜑  →  𝐾  ∈  Lat )  | 
						
						
							| 16 | 
							
								15
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝐾  ∈  Lat )  | 
						
						
							| 17 | 
							
								5 4
							 | 
							dalemcceb | 
							⊢ ( 𝜓  →  𝑐  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑐  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							dalem42 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ∈  𝑂 )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 21 | 
							
								20 7
							 | 
							lplnbase | 
							⊢ ( ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ∈  𝑂  →  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 23 | 
							
								20 2 3
							 | 
							latleeqj1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑐  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑐  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ↔  ( 𝑐  ∨  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) )  =  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 24 | 
							
								16 18 22 23
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ↔  ( 𝑐  ∨  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) )  =  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 25 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							dalem28 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑃  ≤  ( 𝐺  ∨  𝑐 ) )  | 
						
						
							| 26 | 
							
								1
							 | 
							dalemkehl | 
							⊢ ( 𝜑  →  𝐾  ∈  HL )  | 
						
						
							| 27 | 
							
								26
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝐾  ∈  HL )  | 
						
						
							| 28 | 
							
								5
							 | 
							dalemccea | 
							⊢ ( 𝜓  →  𝑐  ∈  𝐴 )  | 
						
						
							| 29 | 
							
								28
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑐  ∈  𝐴 )  | 
						
						
							| 30 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							dalem23 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝐺  ∈  𝐴 )  | 
						
						
							| 31 | 
							
								3 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑐  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑐  ∨  𝐺 )  =  ( 𝐺  ∨  𝑐 ) )  | 
						
						
							| 32 | 
							
								27 29 30 31
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ∨  𝐺 )  =  ( 𝐺  ∨  𝑐 ) )  | 
						
						
							| 33 | 
							
								25 32
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑃  ≤  ( 𝑐  ∨  𝐺 ) )  | 
						
						
							| 34 | 
							
								1 2 3 4 5 6 7 8 9 11
							 | 
							dalem33 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑄  ≤  ( 𝐻  ∨  𝑐 ) )  | 
						
						
							| 35 | 
							
								1 2 3 4 5 6 7 8 9 11
							 | 
							dalem29 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝐻  ∈  𝐴 )  | 
						
						
							| 36 | 
							
								3 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑐  ∈  𝐴  ∧  𝐻  ∈  𝐴 )  →  ( 𝑐  ∨  𝐻 )  =  ( 𝐻  ∨  𝑐 ) )  | 
						
						
							| 37 | 
							
								27 29 35 36
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ∨  𝐻 )  =  ( 𝐻  ∨  𝑐 ) )  | 
						
						
							| 38 | 
							
								34 37
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑄  ≤  ( 𝑐  ∨  𝐻 ) )  | 
						
						
							| 39 | 
							
								1 4
							 | 
							dalempeb | 
							⊢ ( 𝜑  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 41 | 
							
								20 3 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑐  ∈  𝐴  ∧  𝐺  ∈  𝐴 )  →  ( 𝑐  ∨  𝐺 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 42 | 
							
								27 29 30 41
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ∨  𝐺 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 43 | 
							
								1 4
							 | 
							dalemqeb | 
							⊢ ( 𝜑  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 45 | 
							
								20 3 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑐  ∈  𝐴  ∧  𝐻  ∈  𝐴 )  →  ( 𝑐  ∨  𝐻 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 46 | 
							
								27 29 35 45
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ∨  𝐻 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 47 | 
							
								20 2 3
							 | 
							latjlej12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑐  ∨  𝐺 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑐  ∨  𝐻 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑃  ≤  ( 𝑐  ∨  𝐺 )  ∧  𝑄  ≤  ( 𝑐  ∨  𝐻 ) )  →  ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝑐  ∨  𝐺 )  ∨  ( 𝑐  ∨  𝐻 ) ) ) )  | 
						
						
							| 48 | 
							
								16 40 42 44 46 47
							 | 
							syl122anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( ( 𝑃  ≤  ( 𝑐  ∨  𝐺 )  ∧  𝑄  ≤  ( 𝑐  ∨  𝐻 ) )  →  ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝑐  ∨  𝐺 )  ∨  ( 𝑐  ∨  𝐻 ) ) ) )  | 
						
						
							| 49 | 
							
								33 38 48
							 | 
							mp2and | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝑐  ∨  𝐺 )  ∨  ( 𝑐  ∨  𝐻 ) ) )  | 
						
						
							| 50 | 
							
								20 4
							 | 
							atbase | 
							⊢ ( 𝐺  ∈  𝐴  →  𝐺  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 51 | 
							
								30 50
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝐺  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 52 | 
							
								20 4
							 | 
							atbase | 
							⊢ ( 𝐻  ∈  𝐴  →  𝐻  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 53 | 
							
								35 52
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝐻  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 54 | 
							
								20 3
							 | 
							latjjdi | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑐  ∈  ( Base ‘ 𝐾 )  ∧  𝐺  ∈  ( Base ‘ 𝐾 )  ∧  𝐻  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  =  ( ( 𝑐  ∨  𝐺 )  ∨  ( 𝑐  ∨  𝐻 ) ) )  | 
						
						
							| 55 | 
							
								16 18 51 53 54
							 | 
							syl13anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  =  ( ( 𝑐  ∨  𝐺 )  ∨  ( 𝑐  ∨  𝐻 ) ) )  | 
						
						
							| 56 | 
							
								49 55
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑃  ∨  𝑄 )  ≤  ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) ) )  | 
						
						
							| 57 | 
							
								1 2 3 4 5 6 7 8 9 12
							 | 
							dalem37 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑅  ≤  ( 𝐼  ∨  𝑐 ) )  | 
						
						
							| 58 | 
							
								1 2 3 4 5 6 7 8 9 12
							 | 
							dalem34 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝐼  ∈  𝐴 )  | 
						
						
							| 59 | 
							
								3 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑐  ∈  𝐴  ∧  𝐼  ∈  𝐴 )  →  ( 𝑐  ∨  𝐼 )  =  ( 𝐼  ∨  𝑐 ) )  | 
						
						
							| 60 | 
							
								27 29 58 59
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ∨  𝐼 )  =  ( 𝐼  ∨  𝑐 ) )  | 
						
						
							| 61 | 
							
								57 60
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑅  ≤  ( 𝑐  ∨  𝐼 ) )  | 
						
						
							| 62 | 
							
								1 3 4
							 | 
							dalempjqeb | 
							⊢ ( 𝜑  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 64 | 
							
								20 3 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝐺  ∈  𝐴  ∧  𝐻  ∈  𝐴 )  →  ( 𝐺  ∨  𝐻 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 65 | 
							
								27 30 35 64
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝐺  ∨  𝐻 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 66 | 
							
								20 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑐  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐺  ∨  𝐻 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 67 | 
							
								16 18 65 66
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 68 | 
							
								1 4
							 | 
							dalemreb | 
							⊢ ( 𝜑  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 70 | 
							
								20 3 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑐  ∈  𝐴  ∧  𝐼  ∈  𝐴 )  →  ( 𝑐  ∨  𝐼 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 71 | 
							
								27 29 58 70
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ∨  𝐼 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 72 | 
							
								20 2 3
							 | 
							latjlej12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑐  ∨  𝐼 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( ( 𝑃  ∨  𝑄 )  ≤  ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∧  𝑅  ≤  ( 𝑐  ∨  𝐼 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  ≤  ( ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∨  ( 𝑐  ∨  𝐼 ) ) ) )  | 
						
						
							| 73 | 
							
								16 63 67 69 71 72
							 | 
							syl122anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( ( ( 𝑃  ∨  𝑄 )  ≤  ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∧  𝑅  ≤  ( 𝑐  ∨  𝐼 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  ≤  ( ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∨  ( 𝑐  ∨  𝐼 ) ) ) )  | 
						
						
							| 74 | 
							
								56 61 73
							 | 
							mp2and | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  ≤  ( ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∨  ( 𝑐  ∨  𝐼 ) ) )  | 
						
						
							| 75 | 
							
								20 4
							 | 
							atbase | 
							⊢ ( 𝐼  ∈  𝐴  →  𝐼  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 76 | 
							
								58 75
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝐼  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 77 | 
							
								20 3
							 | 
							latjjdi | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑐  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐺  ∨  𝐻 )  ∈  ( Base ‘ 𝐾 )  ∧  𝐼  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝑐  ∨  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) )  =  ( ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∨  ( 𝑐  ∨  𝐼 ) ) )  | 
						
						
							| 78 | 
							
								16 18 65 76 77
							 | 
							syl13anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ∨  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) )  =  ( ( 𝑐  ∨  ( 𝐺  ∨  𝐻 ) )  ∨  ( 𝑐  ∨  𝐼 ) ) )  | 
						
						
							| 79 | 
							
								74 78
							 | 
							breqtrrd | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑅 )  ≤  ( 𝑐  ∨  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 80 | 
							
								8 79
							 | 
							eqbrtrid | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑌  ≤  ( 𝑐  ∨  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( 𝑐  ∨  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) )  =  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  →  ( 𝑌  ≤  ( 𝑐  ∨  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) )  ↔  𝑌  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							syl5ibcom | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( ( 𝑐  ∨  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) )  =  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  →  𝑌  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 83 | 
							
								24 82
							 | 
							sylbid | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  →  𝑌  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 84 | 
							
								1
							 | 
							dalemyeo | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑂 )  | 
						
						
							| 85 | 
							
								84
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  𝑌  ∈  𝑂 )  | 
						
						
							| 86 | 
							
								2 7
							 | 
							lplncmp | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑌  ∈  𝑂  ∧  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ∈  𝑂 )  →  ( 𝑌  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ↔  𝑌  =  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 87 | 
							
								27 85 19 86
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑌  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  ↔  𝑌  =  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 88 | 
							
								83 87
							 | 
							sylibd | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑐  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  →  𝑌  =  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							necon3ad | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ( 𝑌  ≠  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 )  →  ¬  𝑐  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) ) )  | 
						
						
							| 90 | 
							
								14 89
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑌  =  𝑍  ∧  𝜓 )  →  ¬  𝑐  ≤  ( ( 𝐺  ∨  𝐻 )  ∨  𝐼 ) )  |