Metamath Proof Explorer


Theorem dalem44

Description: Lemma for dath . Dummy center of perspectivity c lies outside of plane G H I . (Contributed by NM, 16-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
dalem44.m = ( meet ‘ 𝐾 )
dalem44.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem44.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem44.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem44.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
dalem44.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
dalem44.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
Assertion dalem44 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 dalem44.m = ( meet ‘ 𝐾 )
7 dalem44.o 𝑂 = ( LPlanes ‘ 𝐾 )
8 dalem44.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
9 dalem44.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
10 dalem44.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
11 dalem44.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
12 dalem44.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
13 1 2 3 4 5 6 7 8 9 10 11 12 dalem43 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐼 ) ≠ 𝑌 )
14 13 necomd ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌 ≠ ( ( 𝐺 𝐻 ) 𝐼 ) )
15 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
16 15 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ Lat )
17 5 4 dalemcceb ( 𝜓𝑐 ∈ ( Base ‘ 𝐾 ) )
18 17 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐 ∈ ( Base ‘ 𝐾 ) )
19 1 2 3 4 5 6 7 8 9 10 11 12 dalem42 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐼 ) ∈ 𝑂 )
20 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
21 20 7 lplnbase ( ( ( 𝐺 𝐻 ) 𝐼 ) ∈ 𝑂 → ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) )
22 19 21 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) )
23 20 2 3 latleeqj1 ( ( 𝐾 ∈ Lat ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐺 𝐻 ) 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ↔ ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) = ( ( 𝐺 𝐻 ) 𝐼 ) ) )
24 16 18 22 23 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ↔ ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) = ( ( 𝐺 𝐻 ) 𝐼 ) ) )
25 1 2 3 4 5 6 7 8 9 10 dalem28 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑃 ( 𝐺 𝑐 ) )
26 1 dalemkehl ( 𝜑𝐾 ∈ HL )
27 26 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ HL )
28 5 dalemccea ( 𝜓𝑐𝐴 )
29 28 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐𝐴 )
30 1 2 3 4 5 6 7 8 9 10 dalem23 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺𝐴 )
31 3 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴 ) → ( 𝑐 𝐺 ) = ( 𝐺 𝑐 ) )
32 27 29 30 31 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝐺 ) = ( 𝐺 𝑐 ) )
33 25 32 breqtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑃 ( 𝑐 𝐺 ) )
34 1 2 3 4 5 6 7 8 9 11 dalem33 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑄 ( 𝐻 𝑐 ) )
35 1 2 3 4 5 6 7 8 9 11 dalem29 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐻𝐴 )
36 3 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴 ) → ( 𝑐 𝐻 ) = ( 𝐻 𝑐 ) )
37 27 29 35 36 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝐻 ) = ( 𝐻 𝑐 ) )
38 34 37 breqtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑄 ( 𝑐 𝐻 ) )
39 1 4 dalempeb ( 𝜑𝑃 ∈ ( Base ‘ 𝐾 ) )
40 39 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
41 20 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴 ) → ( 𝑐 𝐺 ) ∈ ( Base ‘ 𝐾 ) )
42 27 29 30 41 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝐺 ) ∈ ( Base ‘ 𝐾 ) )
43 1 4 dalemqeb ( 𝜑𝑄 ∈ ( Base ‘ 𝐾 ) )
44 43 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
45 20 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴 ) → ( 𝑐 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
46 27 29 35 45 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
47 20 2 3 latjlej12 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 𝐺 ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ( 𝑐 𝐺 ) ∧ 𝑄 ( 𝑐 𝐻 ) ) → ( 𝑃 𝑄 ) ( ( 𝑐 𝐺 ) ( 𝑐 𝐻 ) ) ) )
48 16 40 42 44 46 47 syl122anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑃 ( 𝑐 𝐺 ) ∧ 𝑄 ( 𝑐 𝐻 ) ) → ( 𝑃 𝑄 ) ( ( 𝑐 𝐺 ) ( 𝑐 𝐻 ) ) ) )
49 33 38 48 mp2and ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑃 𝑄 ) ( ( 𝑐 𝐺 ) ( 𝑐 𝐻 ) ) )
50 20 4 atbase ( 𝐺𝐴𝐺 ∈ ( Base ‘ 𝐾 ) )
51 30 50 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺 ∈ ( Base ‘ 𝐾 ) )
52 20 4 atbase ( 𝐻𝐴𝐻 ∈ ( Base ‘ 𝐾 ) )
53 35 52 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐻 ∈ ( Base ‘ 𝐾 ) )
54 20 3 latjjdi ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ 𝐺 ∈ ( Base ‘ 𝐾 ) ∧ 𝐻 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑐 ( 𝐺 𝐻 ) ) = ( ( 𝑐 𝐺 ) ( 𝑐 𝐻 ) ) )
55 16 18 51 53 54 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 ( 𝐺 𝐻 ) ) = ( ( 𝑐 𝐺 ) ( 𝑐 𝐻 ) ) )
56 49 55 breqtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑃 𝑄 ) ( 𝑐 ( 𝐺 𝐻 ) ) )
57 1 2 3 4 5 6 7 8 9 12 dalem37 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑅 ( 𝐼 𝑐 ) )
58 1 2 3 4 5 6 7 8 9 12 dalem34 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼𝐴 )
59 3 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴 ) → ( 𝑐 𝐼 ) = ( 𝐼 𝑐 ) )
60 27 29 58 59 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝐼 ) = ( 𝐼 𝑐 ) )
61 57 60 breqtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑅 ( 𝑐 𝐼 ) )
62 1 3 4 dalempjqeb ( 𝜑 → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
63 62 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
64 20 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
65 27 30 35 64 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
66 20 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑐 ( 𝐺 𝐻 ) ) ∈ ( Base ‘ 𝐾 ) )
67 16 18 65 66 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 ( 𝐺 𝐻 ) ) ∈ ( Base ‘ 𝐾 ) )
68 1 4 dalemreb ( 𝜑𝑅 ∈ ( Base ‘ 𝐾 ) )
69 68 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑅 ∈ ( Base ‘ 𝐾 ) )
70 20 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴 ) → ( 𝑐 𝐼 ) ∈ ( Base ‘ 𝐾 ) )
71 27 29 58 70 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝐼 ) ∈ ( Base ‘ 𝐾 ) )
72 20 2 3 latjlej12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 ( 𝐺 𝐻 ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑐 𝐼 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑃 𝑄 ) ( 𝑐 ( 𝐺 𝐻 ) ) ∧ 𝑅 ( 𝑐 𝐼 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( ( 𝑐 ( 𝐺 𝐻 ) ) ( 𝑐 𝐼 ) ) ) )
73 16 63 67 69 71 72 syl122anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( 𝑃 𝑄 ) ( 𝑐 ( 𝐺 𝐻 ) ) ∧ 𝑅 ( 𝑐 𝐼 ) ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( ( 𝑐 ( 𝐺 𝐻 ) ) ( 𝑐 𝐼 ) ) ) )
74 56 61 73 mp2and ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( ( 𝑐 ( 𝐺 𝐻 ) ) ( 𝑐 𝐼 ) ) )
75 20 4 atbase ( 𝐼𝐴𝐼 ∈ ( Base ‘ 𝐾 ) )
76 58 75 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐼 ∈ ( Base ‘ 𝐾 ) )
77 20 3 latjjdi ( ( 𝐾 ∈ Lat ∧ ( 𝑐 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐼 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) = ( ( 𝑐 ( 𝐺 𝐻 ) ) ( 𝑐 𝐼 ) ) )
78 16 18 65 76 77 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) = ( ( 𝑐 ( 𝐺 𝐻 ) ) ( 𝑐 𝐼 ) ) )
79 74 78 breqtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑃 𝑄 ) 𝑅 ) ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) )
80 8 79 eqbrtrid ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌 ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) )
81 breq2 ( ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) = ( ( 𝐺 𝐻 ) 𝐼 ) → ( 𝑌 ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) ↔ 𝑌 ( ( 𝐺 𝐻 ) 𝐼 ) ) )
82 80 81 syl5ibcom ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) = ( ( 𝐺 𝐻 ) 𝐼 ) → 𝑌 ( ( 𝐺 𝐻 ) 𝐼 ) ) )
83 24 82 sylbid ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) → 𝑌 ( ( 𝐺 𝐻 ) 𝐼 ) ) )
84 1 dalemyeo ( 𝜑𝑌𝑂 )
85 84 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌𝑂 )
86 2 7 lplncmp ( ( 𝐾 ∈ HL ∧ 𝑌𝑂 ∧ ( ( 𝐺 𝐻 ) 𝐼 ) ∈ 𝑂 ) → ( 𝑌 ( ( 𝐺 𝐻 ) 𝐼 ) ↔ 𝑌 = ( ( 𝐺 𝐻 ) 𝐼 ) ) )
87 27 85 19 86 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑌 ( ( 𝐺 𝐻 ) 𝐼 ) ↔ 𝑌 = ( ( 𝐺 𝐻 ) 𝐼 ) ) )
88 83 87 sylibd ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) → 𝑌 = ( ( 𝐺 𝐻 ) 𝐼 ) ) )
89 88 necon3ad ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑌 ≠ ( ( 𝐺 𝐻 ) 𝐼 ) → ¬ 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) ) )
90 14 89 mpd ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝑐 ( ( 𝐺 𝐻 ) 𝐼 ) )