Metamath Proof Explorer


Theorem dalem57

Description: Lemma for dath . Axis of perspectivity point D is on the auxiliary line B . (Contributed by NM, 9-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
dalem57.m = ( meet ‘ 𝐾 )
dalem57.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem57.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem57.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem57.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
dalem57.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
dalem57.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
dalem57.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
dalem57.b1 𝐵 = ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑌 )
Assertion dalem57 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐷 𝐵 )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 dalem57.m = ( meet ‘ 𝐾 )
7 dalem57.o 𝑂 = ( LPlanes ‘ 𝐾 )
8 dalem57.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
9 dalem57.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
10 dalem57.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
11 dalem57.g 𝐺 = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
12 dalem57.h 𝐻 = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
13 dalem57.i 𝐼 = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
14 dalem57.b1 𝐵 = ( ( ( 𝐺 𝐻 ) 𝐼 ) 𝑌 )
15 1 2 3 4 5 6 7 8 9 11 12 13 14 dalem55 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) = ( ( 𝐺 𝐻 ) 𝐵 ) )
16 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
17 16 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ Lat )
18 1 dalemkehl ( 𝜑𝐾 ∈ HL )
19 18 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ HL )
20 1 2 3 4 5 6 7 8 9 11 dalem23 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐺𝐴 )
21 1 2 3 4 5 6 7 8 9 12 dalem29 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐻𝐴 )
22 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
23 22 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
24 19 20 21 23 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) )
25 1 3 4 dalempjqeb ( 𝜑 → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
26 25 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
27 22 2 6 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( 𝑃 𝑄 ) )
28 17 24 26 27 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑃 𝑄 ) ) ( 𝑃 𝑄 ) )
29 15 28 eqbrtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐵 ) ( 𝑃 𝑄 ) )
30 1 2 3 4 5 6 7 8 9 11 12 13 14 dalem56 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑆 𝑇 ) ) = ( ( 𝐺 𝐻 ) 𝐵 ) )
31 1 3 4 dalemsjteb ( 𝜑 → ( 𝑆 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
32 31 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑆 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
33 22 2 6 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 𝐻 ) ( 𝑆 𝑇 ) ) ( 𝑆 𝑇 ) )
34 17 24 32 33 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) ( 𝑆 𝑇 ) ) ( 𝑆 𝑇 ) )
35 30 34 eqbrtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐵 ) ( 𝑆 𝑇 ) )
36 1 2 3 4 5 6 7 8 9 11 12 13 14 dalem54 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐵 ) ∈ 𝐴 )
37 22 4 atbase ( ( ( 𝐺 𝐻 ) 𝐵 ) ∈ 𝐴 → ( ( 𝐺 𝐻 ) 𝐵 ) ∈ ( Base ‘ 𝐾 ) )
38 36 37 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐵 ) ∈ ( Base ‘ 𝐾 ) )
39 22 2 6 latlem12 ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝐺 𝐻 ) 𝐵 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑆 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( 𝐺 𝐻 ) 𝐵 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐺 𝐻 ) 𝐵 ) ( 𝑆 𝑇 ) ) ↔ ( ( 𝐺 𝐻 ) 𝐵 ) ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) ) ) )
40 17 38 26 32 39 syl13anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( ( 𝐺 𝐻 ) 𝐵 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐺 𝐻 ) 𝐵 ) ( 𝑆 𝑇 ) ) ↔ ( ( 𝐺 𝐻 ) 𝐵 ) ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) ) ) )
41 29 35 40 mpbi2and ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐵 ) ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) ) )
42 41 10 breqtrrdi ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐵 ) 𝐷 )
43 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
44 19 43 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ AtLat )
45 1 2 3 4 6 7 8 9 10 dalemdea ( 𝜑𝐷𝐴 )
46 45 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐷𝐴 )
47 2 4 atcmp ( ( 𝐾 ∈ AtLat ∧ ( ( 𝐺 𝐻 ) 𝐵 ) ∈ 𝐴𝐷𝐴 ) → ( ( ( 𝐺 𝐻 ) 𝐵 ) 𝐷 ↔ ( ( 𝐺 𝐻 ) 𝐵 ) = 𝐷 ) )
48 44 36 46 47 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( ( 𝐺 𝐻 ) 𝐵 ) 𝐷 ↔ ( ( 𝐺 𝐻 ) 𝐵 ) = 𝐷 ) )
49 42 48 mpbid ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐵 ) = 𝐷 )
50 eqid ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 )
51 1 2 3 4 5 6 50 7 8 9 11 12 13 14 dalem53 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐵 ∈ ( LLines ‘ 𝐾 ) )
52 22 50 llnbase ( 𝐵 ∈ ( LLines ‘ 𝐾 ) → 𝐵 ∈ ( Base ‘ 𝐾 ) )
53 51 52 syl ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐵 ∈ ( Base ‘ 𝐾 ) )
54 22 2 6 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝐺 𝐻 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐵 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 𝐻 ) 𝐵 ) 𝐵 )
55 17 24 53 54 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝐺 𝐻 ) 𝐵 ) 𝐵 )
56 49 55 eqbrtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐷 𝐵 )