Metamath Proof Explorer


Theorem dalem61

Description: Lemma for dath . Show that atoms D , E , and F lie on the same line (axis of perspectivity). Eliminate hypotheses containing dummy atoms c and d . (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
dalem61.m = ( meet ‘ 𝐾 )
dalem61.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem61.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem61.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem61.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
dalem61.e 𝐸 = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) )
dalem61.f 𝐹 = ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) )
Assertion dalem61 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐹 ( 𝐷 𝐸 ) )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 dalem61.m = ( meet ‘ 𝐾 )
7 dalem61.o 𝑂 = ( LPlanes ‘ 𝐾 )
8 dalem61.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
9 dalem61.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
10 dalem61.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
11 dalem61.e 𝐸 = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) )
12 dalem61.f 𝐹 = ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) )
13 eqid ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) ) = ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) )
14 eqid ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) ) = ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) )
15 eqid ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) ) = ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) )
16 eqid ( ( ( ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) ) ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) ) ) ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) ) ) 𝑌 ) = ( ( ( ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) ) ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) ) ) ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) ) ) 𝑌 )
17 1 2 3 4 5 6 7 8 9 12 13 14 15 16 dalem59 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐹 ( ( ( ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) ) ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) ) ) ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) ) ) 𝑌 ) )
18 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 dalem60 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝐷 𝐸 ) = ( ( ( ( ( 𝑐 𝑃 ) ( 𝑑 𝑆 ) ) ( ( 𝑐 𝑄 ) ( 𝑑 𝑇 ) ) ) ( ( 𝑐 𝑅 ) ( 𝑑 𝑈 ) ) ) 𝑌 ) )
19 17 18 breqtrrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐹 ( 𝐷 𝐸 ) )