Description: Lemma for dath . Combine the cases where Y and Z are different planes with the case where Y and Z are the same plane. (Contributed by NM, 11-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalem62.ph | ⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) | |
dalem62.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
dalem62.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
dalem62.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
dalem62.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
dalem62.o | ⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) | ||
dalem62.y | ⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) | ||
dalem62.z | ⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) | ||
dalem62.d | ⊢ 𝐷 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) | ||
dalem62.e | ⊢ 𝐸 = ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) | ||
dalem62.f | ⊢ 𝐹 = ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) | ||
Assertion | dalem63 | ⊢ ( 𝜑 → 𝐹 ≤ ( 𝐷 ∨ 𝐸 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem62.ph | ⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) | |
2 | dalem62.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
3 | dalem62.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
4 | dalem62.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
5 | dalem62.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
6 | dalem62.o | ⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) | |
7 | dalem62.y | ⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) | |
8 | dalem62.z | ⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) | |
9 | dalem62.d | ⊢ 𝐷 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) | |
10 | dalem62.e | ⊢ 𝐸 = ( ( 𝑄 ∨ 𝑅 ) ∧ ( 𝑇 ∨ 𝑈 ) ) | |
11 | dalem62.f | ⊢ 𝐹 = ( ( 𝑅 ∨ 𝑃 ) ∧ ( 𝑈 ∨ 𝑆 ) ) | |
12 | 1 2 3 4 5 6 7 8 9 10 11 | dalem62 | ⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ) → 𝐹 ≤ ( 𝐷 ∨ 𝐸 ) ) |
13 | 1 2 3 4 5 6 7 8 9 10 11 | dalem16 | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ 𝑍 ) → 𝐹 ≤ ( 𝐷 ∨ 𝐸 ) ) |
14 | 12 13 | pm2.61dane | ⊢ ( 𝜑 → 𝐹 ≤ ( 𝐷 ∨ 𝐸 ) ) |