Metamath Proof Explorer


Theorem dalem63

Description: Lemma for dath . Combine the cases where Y and Z are different planes with the case where Y and Z are the same plane. (Contributed by NM, 11-Aug-2012)

Ref Expression
Hypotheses dalem62.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem62.l = ( le ‘ 𝐾 )
dalem62.j = ( join ‘ 𝐾 )
dalem62.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem62.m = ( meet ‘ 𝐾 )
dalem62.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem62.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem62.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem62.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
dalem62.e 𝐸 = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) )
dalem62.f 𝐹 = ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) )
Assertion dalem63 ( 𝜑𝐹 ( 𝐷 𝐸 ) )

Proof

Step Hyp Ref Expression
1 dalem62.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem62.l = ( le ‘ 𝐾 )
3 dalem62.j = ( join ‘ 𝐾 )
4 dalem62.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem62.m = ( meet ‘ 𝐾 )
6 dalem62.o 𝑂 = ( LPlanes ‘ 𝐾 )
7 dalem62.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
8 dalem62.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
9 dalem62.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
10 dalem62.e 𝐸 = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) )
11 dalem62.f 𝐹 = ( ( 𝑅 𝑃 ) ( 𝑈 𝑆 ) )
12 1 2 3 4 5 6 7 8 9 10 11 dalem62 ( ( 𝜑𝑌 = 𝑍 ) → 𝐹 ( 𝐷 𝐸 ) )
13 1 2 3 4 5 6 7 8 9 10 11 dalem16 ( ( 𝜑𝑌𝑍 ) → 𝐹 ( 𝐷 𝐸 ) )
14 12 13 pm2.61dane ( 𝜑𝐹 ( 𝐷 𝐸 ) )