Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem6.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
6 |
|
dalem6.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
7 |
|
dalem6.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
8 |
|
dalem6.w |
⊢ 𝑊 = ( 𝑌 ∨ 𝐶 ) |
9 |
1 2 3 4 5 6 7 8
|
dalem6 |
⊢ ( 𝜑 → 𝑆 ≤ 𝑊 ) |
10 |
1 2 3 4 5 6 7 8
|
dalem7 |
⊢ ( 𝜑 → 𝑇 ≤ 𝑊 ) |
11 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
12 |
1 4
|
dalemseb |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
13 |
1 4
|
dalemteb |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
14 |
1 5
|
dalemyeb |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
15 |
1 4
|
dalemceb |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐾 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
17 |
16 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑌 ∨ 𝐶 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
11 14 15 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 ∨ 𝐶 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
8 18
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
20 |
16 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑆 ≤ 𝑊 ∧ 𝑇 ≤ 𝑊 ) ↔ ( 𝑆 ∨ 𝑇 ) ≤ 𝑊 ) ) |
21 |
11 12 13 19 20
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑆 ≤ 𝑊 ∧ 𝑇 ≤ 𝑊 ) ↔ ( 𝑆 ∨ 𝑇 ) ≤ 𝑊 ) ) |
22 |
9 10 21
|
mpbi2and |
⊢ ( 𝜑 → ( 𝑆 ∨ 𝑇 ) ≤ 𝑊 ) |
23 |
1 2 3 4 5 6 8
|
dalem5 |
⊢ ( 𝜑 → 𝑈 ≤ 𝑊 ) |
24 |
1 3 4
|
dalemsjteb |
⊢ ( 𝜑 → ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
1 4
|
dalemueb |
⊢ ( 𝜑 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
26 |
16 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑆 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑆 ∨ 𝑇 ) ≤ 𝑊 ∧ 𝑈 ≤ 𝑊 ) ↔ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ≤ 𝑊 ) ) |
27 |
11 24 25 19 26
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝑆 ∨ 𝑇 ) ≤ 𝑊 ∧ 𝑈 ≤ 𝑊 ) ↔ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ≤ 𝑊 ) ) |
28 |
22 23 27
|
mpbi2and |
⊢ ( 𝜑 → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ≤ 𝑊 ) |
29 |
7 28
|
eqbrtrid |
⊢ ( 𝜑 → 𝑍 ≤ 𝑊 ) |