Metamath Proof Explorer


Theorem dalem9

Description: Lemma for dath . Since -. C .<_ Y , the join Y .\/ C forms a 3-dimensional space. (Contributed by NM, 20-Jul-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem9.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem9.v 𝑉 = ( LVols ‘ 𝐾 )
dalem9.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem9.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem9.w 𝑊 = ( 𝑌 𝐶 )
Assertion dalem9 ( ( 𝜑𝑌𝑍 ) → 𝑊𝑉 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem9.o 𝑂 = ( LPlanes ‘ 𝐾 )
6 dalem9.v 𝑉 = ( LVols ‘ 𝐾 )
7 dalem9.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
8 dalem9.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
9 dalem9.w 𝑊 = ( 𝑌 𝐶 )
10 1 dalemkehl ( 𝜑𝐾 ∈ HL )
11 10 adantr ( ( 𝜑𝑌𝑍 ) → 𝐾 ∈ HL )
12 1 dalemyeo ( 𝜑𝑌𝑂 )
13 12 adantr ( ( 𝜑𝑌𝑍 ) → 𝑌𝑂 )
14 1 2 3 4 5 7 dalemcea ( 𝜑𝐶𝐴 )
15 14 adantr ( ( 𝜑𝑌𝑍 ) → 𝐶𝐴 )
16 1 2 3 4 5 7 8 dalem-cly ( ( 𝜑𝑌𝑍 ) → ¬ 𝐶 𝑌 )
17 2 3 4 5 6 lvoli3 ( ( ( 𝐾 ∈ HL ∧ 𝑌𝑂𝐶𝐴 ) ∧ ¬ 𝐶 𝑌 ) → ( 𝑌 𝐶 ) ∈ 𝑉 )
18 11 13 15 16 17 syl31anc ( ( 𝜑𝑌𝑍 ) → ( 𝑌 𝐶 ) ∈ 𝑉 )
19 9 18 eqeltrid ( ( 𝜑𝑌𝑍 ) → 𝑊𝑉 )