Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | da.ps0 | ⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) | |
| da.a1 | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | dalemcceb | ⊢ ( 𝜓 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | da.ps0 | ⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) | |
| 2 | da.a1 | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | 1 | dalemccea | ⊢ ( 𝜓 → 𝑐 ∈ 𝐴 ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 5 | 4 2 | atbase | ⊢ ( 𝑐 ∈ 𝐴 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝜓 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |