Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | da.ps0 | ⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) | |
da.a1 | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
Assertion | dalemcceb | ⊢ ( 𝜓 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | ⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) | |
2 | da.a1 | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
3 | 1 | dalemccea | ⊢ ( 𝜓 → 𝑐 ∈ 𝐴 ) |
4 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
5 | 4 2 | atbase | ⊢ ( 𝑐 ∈ 𝐴 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |
6 | 3 5 | syl | ⊢ ( 𝜓 → 𝑐 ∈ ( Base ‘ 𝐾 ) ) |