Metamath Proof Explorer


Theorem dalemcceb

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses da.ps0 ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
da.a1 𝐴 = ( Atoms ‘ 𝐾 )
Assertion dalemcceb ( 𝜓𝑐 ∈ ( Base ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 da.ps0 ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
2 da.a1 𝐴 = ( Atoms ‘ 𝐾 )
3 1 dalemccea ( 𝜓𝑐𝐴 )
4 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
5 4 2 atbase ( 𝑐𝐴𝑐 ∈ ( Base ‘ 𝐾 ) )
6 3 5 syl ( 𝜓𝑐 ∈ ( Base ‘ 𝐾 ) )