Metamath Proof Explorer


Theorem dalemcea

Description: Lemma for dath . Frequently-used utility lemma. Here we show that C must be an atom. This is an assumption in most presentations of Desargues's theorem; instead, we assume only the C is a lattice element, in order to make later substitutions for C easier. (Contributed by NM, 23-Sep-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem1.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem1.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
Assertion dalemcea ( 𝜑𝐶𝐴 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem1.o 𝑂 = ( LPlanes ‘ 𝐾 )
6 dalem1.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
7 1 dalemkeop ( 𝜑𝐾 ∈ OP )
8 1 4 dalemceb ( 𝜑𝐶 ∈ ( Base ‘ 𝐾 ) )
9 1 dalemkehl ( 𝜑𝐾 ∈ HL )
10 1 2 3 4 5 6 dalempjsen ( 𝜑 → ( 𝑃 𝑆 ) ∈ ( LLines ‘ 𝐾 ) )
11 1 dalemqea ( 𝜑𝑄𝐴 )
12 1 dalemtea ( 𝜑𝑇𝐴 )
13 1 2 3 4 5 6 dalemqnet ( 𝜑𝑄𝑇 )
14 eqid ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 )
15 3 4 14 llni2 ( ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴 ) ∧ 𝑄𝑇 ) → ( 𝑄 𝑇 ) ∈ ( LLines ‘ 𝐾 ) )
16 9 11 12 13 15 syl31anc ( 𝜑 → ( 𝑄 𝑇 ) ∈ ( LLines ‘ 𝐾 ) )
17 1 2 3 4 5 6 dalem1 ( 𝜑 → ( 𝑃 𝑆 ) ≠ ( 𝑄 𝑇 ) )
18 1 dalem-clpjq ( 𝜑 → ¬ 𝐶 ( 𝑃 𝑄 ) )
19 1 3 4 dalempjqeb ( 𝜑 → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
20 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
21 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
22 20 2 21 op0le ( ( 𝐾 ∈ OP ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 0. ‘ 𝐾 ) ( 𝑃 𝑄 ) )
23 7 19 22 syl2anc ( 𝜑 → ( 0. ‘ 𝐾 ) ( 𝑃 𝑄 ) )
24 breq1 ( 𝐶 = ( 0. ‘ 𝐾 ) → ( 𝐶 ( 𝑃 𝑄 ) ↔ ( 0. ‘ 𝐾 ) ( 𝑃 𝑄 ) ) )
25 23 24 syl5ibrcom ( 𝜑 → ( 𝐶 = ( 0. ‘ 𝐾 ) → 𝐶 ( 𝑃 𝑄 ) ) )
26 25 necon3bd ( 𝜑 → ( ¬ 𝐶 ( 𝑃 𝑄 ) → 𝐶 ≠ ( 0. ‘ 𝐾 ) ) )
27 18 26 mpd ( 𝜑𝐶 ≠ ( 0. ‘ 𝐾 ) )
28 eqid ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 )
29 20 28 21 opltn0 ( ( 𝐾 ∈ OP ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶𝐶 ≠ ( 0. ‘ 𝐾 ) ) )
30 7 8 29 syl2anc ( 𝜑 → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶𝐶 ≠ ( 0. ‘ 𝐾 ) ) )
31 27 30 mpbird ( 𝜑 → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶 )
32 1 dalemclpjs ( 𝜑𝐶 ( 𝑃 𝑆 ) )
33 1 dalemclqjt ( 𝜑𝐶 ( 𝑄 𝑇 ) )
34 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
35 1 dalempea ( 𝜑𝑃𝐴 )
36 1 dalemsea ( 𝜑𝑆𝐴 )
37 20 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴 ) → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
38 9 35 36 37 syl3anc ( 𝜑 → ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) )
39 20 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴 ) → ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
40 9 11 12 39 syl3anc ( 𝜑 → ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) )
41 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
42 20 2 41 latlem12 ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ) ↔ 𝐶 ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ) )
43 34 8 38 40 42 syl13anc ( 𝜑 → ( ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ) ↔ 𝐶 ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ) )
44 32 33 43 mpbi2and ( 𝜑𝐶 ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) )
45 opposet ( 𝐾 ∈ OP → 𝐾 ∈ Poset )
46 7 45 syl ( 𝜑𝐾 ∈ Poset )
47 20 21 op0cl ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) )
48 7 47 syl ( 𝜑 → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) )
49 20 41 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) )
50 34 38 40 49 syl3anc ( 𝜑 → ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) )
51 20 2 28 pltletr ( ( 𝐾 ∈ Poset ∧ ( ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶𝐶 ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ) )
52 46 48 8 50 51 syl13anc ( 𝜑 → ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶𝐶 ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ) )
53 31 44 52 mp2and ( 𝜑 → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) )
54 20 28 21 opltn0 ( ( 𝐾 ∈ OP ∧ ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ↔ ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) )
55 7 50 54 syl2anc ( 𝜑 → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ↔ ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) )
56 53 55 mpbid ( 𝜑 → ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) )
57 41 21 4 14 2llnmat ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝑄 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) ∧ ( ( 𝑃 𝑆 ) ≠ ( 𝑄 𝑇 ) ∧ ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) ) → ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ∈ 𝐴 )
58 9 10 16 17 56 57 syl32anc ( 𝜑 → ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ∈ 𝐴 )
59 20 2 21 4 leat2 ( ( ( 𝐾 ∈ OP ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝐶 ≠ ( 0. ‘ 𝐾 ) ∧ 𝐶 ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) ) ) → 𝐶 = ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) )
60 7 8 58 27 44 59 syl32anc ( 𝜑𝐶 = ( ( 𝑃 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑇 ) ) )
61 60 58 eqeltrd ( 𝜑𝐶𝐴 )