Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem1.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
6 |
|
dalem1.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
7 |
1
|
dalemkeop |
⊢ ( 𝜑 → 𝐾 ∈ OP ) |
8 |
1 4
|
dalemceb |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐾 ) ) |
9 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
10 |
1 2 3 4 5 6
|
dalempjsen |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ) |
11 |
1
|
dalemqea |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
12 |
1
|
dalemtea |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
13 |
1 2 3 4 5 6
|
dalemqnet |
⊢ ( 𝜑 → 𝑄 ≠ 𝑇 ) |
14 |
|
eqid |
⊢ ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 ) |
15 |
3 4 14
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ 𝑄 ≠ 𝑇 ) → ( 𝑄 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) |
16 |
9 11 12 13 15
|
syl31anc |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) |
17 |
1 2 3 4 5 6
|
dalem1 |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑄 ∨ 𝑇 ) ) |
18 |
1
|
dalem-clpjq |
⊢ ( 𝜑 → ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) |
19 |
1 3 4
|
dalempjqeb |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
21 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
22 |
20 2 21
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 0. ‘ 𝐾 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
23 |
7 19 22
|
syl2anc |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
24 |
|
breq1 |
⊢ ( 𝐶 = ( 0. ‘ 𝐾 ) → ( 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ↔ ( 0. ‘ 𝐾 ) ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
25 |
23 24
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝐶 = ( 0. ‘ 𝐾 ) → 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
26 |
25
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) → 𝐶 ≠ ( 0. ‘ 𝐾 ) ) ) |
27 |
18 26
|
mpd |
⊢ ( 𝜑 → 𝐶 ≠ ( 0. ‘ 𝐾 ) ) |
28 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
29 |
20 28 21
|
opltn0 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶 ↔ 𝐶 ≠ ( 0. ‘ 𝐾 ) ) ) |
30 |
7 8 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶 ↔ 𝐶 ≠ ( 0. ‘ 𝐾 ) ) ) |
31 |
27 30
|
mpbird |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶 ) |
32 |
1
|
dalemclpjs |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ) |
33 |
1
|
dalemclqjt |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ) |
34 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
35 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
36 |
1
|
dalemsea |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
37 |
20 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
38 |
9 35 36 37
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
39 |
20 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
40 |
9 11 12 39
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) |
41 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
42 |
20 2 41
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ) ↔ 𝐶 ≤ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) ) |
43 |
34 8 38 40 42
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ) ↔ 𝐶 ≤ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) ) |
44 |
32 33 43
|
mpbi2and |
⊢ ( 𝜑 → 𝐶 ≤ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) |
45 |
|
opposet |
⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) |
46 |
7 45
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Poset ) |
47 |
20 21
|
op0cl |
⊢ ( 𝐾 ∈ OP → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
48 |
7 47
|
syl |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ) |
49 |
20 41
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
50 |
34 38 40 49
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) |
51 |
20 2 28
|
pltletr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( ( 0. ‘ 𝐾 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶 ∧ 𝐶 ≤ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) ) |
52 |
46 48 8 50 51
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) 𝐶 ∧ 𝐶 ≤ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) ) |
53 |
31 44 52
|
mp2and |
⊢ ( 𝜑 → ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) |
54 |
20 28 21
|
opltn0 |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ↔ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) ) |
55 |
7 50 54
|
syl2anc |
⊢ ( 𝜑 → ( ( 0. ‘ 𝐾 ) ( lt ‘ 𝐾 ) ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ↔ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) ) |
56 |
53 55
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) |
57 |
41 21 4 14
|
2llnmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) ∧ ( ( 𝑃 ∨ 𝑆 ) ≠ ( 𝑄 ∨ 𝑇 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ≠ ( 0. ‘ 𝐾 ) ) ) → ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ 𝐴 ) |
58 |
9 10 16 17 56 57
|
syl32anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ 𝐴 ) |
59 |
20 2 21 4
|
leat2 |
⊢ ( ( ( 𝐾 ∈ OP ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ∈ 𝐴 ) ∧ ( 𝐶 ≠ ( 0. ‘ 𝐾 ) ∧ 𝐶 ≤ ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) ) → 𝐶 = ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) |
60 |
7 8 58 27 44 59
|
syl32anc |
⊢ ( 𝜑 → 𝐶 = ( ( 𝑃 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑇 ) ) ) |
61 |
60 58
|
eqeltrd |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |