Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalemdea.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dalemdea.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
7 |
|
dalemdea.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
8 |
|
dalemdea.z |
⊢ 𝑍 = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
9 |
|
dalemdea.d |
⊢ 𝐷 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) |
10 |
1 2 3 4 6 7
|
dalem2 |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑇 ) ) ∈ 𝑂 ) |
11 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
12 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
13 |
1
|
dalemqea |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
14 |
1
|
dalemrea |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
15 |
1
|
dalemyeo |
⊢ ( 𝜑 → 𝑌 ∈ 𝑂 ) |
16 |
3 4 6 7
|
lplnri1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑌 ∈ 𝑂 ) → 𝑃 ≠ 𝑄 ) |
17 |
11 12 13 14 15 16
|
syl131anc |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
18 |
|
eqid |
⊢ ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 ) |
19 |
3 4 18
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( LLines ‘ 𝐾 ) ) |
20 |
11 12 13 17 19
|
syl31anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ ( LLines ‘ 𝐾 ) ) |
21 |
1
|
dalemsea |
⊢ ( 𝜑 → 𝑆 ∈ 𝐴 ) |
22 |
1
|
dalemtea |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
23 |
1
|
dalemuea |
⊢ ( 𝜑 → 𝑈 ∈ 𝐴 ) |
24 |
1
|
dalemzeo |
⊢ ( 𝜑 → 𝑍 ∈ 𝑂 ) |
25 |
3 4 6 8
|
lplnri1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ 𝑍 ∈ 𝑂 ) → 𝑆 ≠ 𝑇 ) |
26 |
11 21 22 23 24 25
|
syl131anc |
⊢ ( 𝜑 → 𝑆 ≠ 𝑇 ) |
27 |
3 4 18
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ 𝑆 ≠ 𝑇 ) → ( 𝑆 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) |
28 |
11 21 22 26 27
|
syl31anc |
⊢ ( 𝜑 → ( 𝑆 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) |
29 |
3 5 4 18 6
|
2llnmj |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝑆 ∨ 𝑇 ) ∈ ( LLines ‘ 𝐾 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ∈ 𝐴 ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑇 ) ) ∈ 𝑂 ) ) |
30 |
11 20 28 29
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ∈ 𝐴 ↔ ( ( 𝑃 ∨ 𝑄 ) ∨ ( 𝑆 ∨ 𝑇 ) ) ∈ 𝑂 ) ) |
31 |
10 30
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑆 ∨ 𝑇 ) ) ∈ 𝐴 ) |
32 |
9 31
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ 𝐴 ) |