Metamath Proof Explorer


Theorem dalemdnee

Description: Lemma for dath . Axis of perspectivity points D and E are different. (Contributed by NM, 10-Aug-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem3.m = ( meet ‘ 𝐾 )
dalem3.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalem3.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalem3.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
dalem3.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
dalem3.e 𝐸 = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) )
Assertion dalemdnee ( 𝜑𝐷𝐸 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem3.m = ( meet ‘ 𝐾 )
6 dalem3.o 𝑂 = ( LPlanes ‘ 𝐾 )
7 dalem3.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
8 dalem3.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
9 dalem3.d 𝐷 = ( ( 𝑃 𝑄 ) ( 𝑆 𝑇 ) )
10 dalem3.e 𝐸 = ( ( 𝑄 𝑅 ) ( 𝑇 𝑈 ) )
11 simpr ( ( 𝜑𝐷 = 𝑄 ) → 𝐷 = 𝑄 )
12 1 2 3 4 6 7 dalemqnet ( 𝜑𝑄𝑇 )
13 12 adantr ( ( 𝜑𝐷 = 𝑄 ) → 𝑄𝑇 )
14 11 13 eqnetrd ( ( 𝜑𝐷 = 𝑄 ) → 𝐷𝑇 )
15 1 2 3 4 5 6 7 8 9 10 dalem4 ( ( 𝜑𝐷𝑇 ) → 𝐷𝐸 )
16 14 15 syldan ( ( 𝜑𝐷 = 𝑄 ) → 𝐷𝐸 )
17 1 2 3 4 5 6 7 8 9 10 dalem3 ( ( 𝜑𝐷𝑄 ) → 𝐷𝐸 )
18 16 17 pm2.61dane ( 𝜑𝐷𝐸 )