| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
| 2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
dalempnes.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
| 6 |
|
dalempnes.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
| 7 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
| 8 |
1 4
|
dalempeb |
⊢ ( 𝜑 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 9 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 10 |
1
|
dalemqea |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 11 |
1
|
dalemrea |
⊢ ( 𝜑 → 𝑅 ∈ 𝐴 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 13 |
12 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
9 10 11 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
12 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ≤ ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
| 16 |
7 8 14 15
|
syl3anc |
⊢ ( 𝜑 → 𝑃 ≤ ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
| 17 |
1
|
dalempea |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
| 18 |
3 4
|
hlatjass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
| 19 |
9 17 10 11 18
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) = ( 𝑃 ∨ ( 𝑄 ∨ 𝑅 ) ) ) |
| 20 |
16 19
|
breqtrrd |
⊢ ( 𝜑 → 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
| 21 |
20 6
|
breqtrrdi |
⊢ ( 𝜑 → 𝑃 ≤ 𝑌 ) |