Metamath Proof Explorer


Theorem dalemqnet

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalempnes.o 𝑂 = ( LPlanes ‘ 𝐾 )
dalempnes.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
Assertion dalemqnet ( 𝜑𝑄𝑇 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalempnes.o 𝑂 = ( LPlanes ‘ 𝐾 )
6 dalempnes.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
7 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
8 1 4 dalemceb ( 𝜑𝐶 ∈ ( Base ‘ 𝐾 ) )
9 1 4 dalemteb ( 𝜑𝑇 ∈ ( Base ‘ 𝐾 ) )
10 1 4 dalemueb ( 𝜑𝑈 ∈ ( Base ‘ 𝐾 ) )
11 simp322 ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) → ¬ 𝐶 ( 𝑇 𝑈 ) )
12 1 11 sylbi ( 𝜑 → ¬ 𝐶 ( 𝑇 𝑈 ) )
13 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
14 13 2 3 latnlej2l ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ) → ¬ 𝐶 𝑇 )
15 7 8 9 10 12 14 syl131anc ( 𝜑 → ¬ 𝐶 𝑇 )
16 1 dalemclqjt ( 𝜑𝐶 ( 𝑄 𝑇 ) )
17 oveq1 ( 𝑄 = 𝑇 → ( 𝑄 𝑇 ) = ( 𝑇 𝑇 ) )
18 17 breq2d ( 𝑄 = 𝑇 → ( 𝐶 ( 𝑄 𝑇 ) ↔ 𝐶 ( 𝑇 𝑇 ) ) )
19 16 18 syl5ibcom ( 𝜑 → ( 𝑄 = 𝑇𝐶 ( 𝑇 𝑇 ) ) )
20 1 dalemkehl ( 𝜑𝐾 ∈ HL )
21 1 dalemtea ( 𝜑𝑇𝐴 )
22 3 4 hlatjidm ( ( 𝐾 ∈ HL ∧ 𝑇𝐴 ) → ( 𝑇 𝑇 ) = 𝑇 )
23 20 21 22 syl2anc ( 𝜑 → ( 𝑇 𝑇 ) = 𝑇 )
24 23 breq2d ( 𝜑 → ( 𝐶 ( 𝑇 𝑇 ) ↔ 𝐶 𝑇 ) )
25 19 24 sylibd ( 𝜑 → ( 𝑄 = 𝑇𝐶 𝑇 ) )
26 25 necon3bd ( 𝜑 → ( ¬ 𝐶 𝑇𝑄𝑇 ) )
27 15 26 mpd ( 𝜑𝑄𝑇 )