Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalemc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalemc.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalemc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalempnes.o |
⊢ 𝑂 = ( LPlanes ‘ 𝐾 ) |
6 |
|
dalempnes.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
7 |
1
|
dalemkelat |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
8 |
1 4
|
dalemceb |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝐾 ) ) |
9 |
1 4
|
dalemteb |
⊢ ( 𝜑 → 𝑇 ∈ ( Base ‘ 𝐾 ) ) |
10 |
1 4
|
dalemueb |
⊢ ( 𝜑 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
11 |
|
simp322 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) → ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ) |
12 |
1 11
|
sylbi |
⊢ ( 𝜑 → ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 2 3
|
latnlej2l |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ ( Base ‘ 𝐾 ) ∧ 𝑇 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ) → ¬ 𝐶 ≤ 𝑇 ) |
15 |
7 8 9 10 12 14
|
syl131anc |
⊢ ( 𝜑 → ¬ 𝐶 ≤ 𝑇 ) |
16 |
1
|
dalemclqjt |
⊢ ( 𝜑 → 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑄 = 𝑇 → ( 𝑄 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑇 ) ) |
18 |
17
|
breq2d |
⊢ ( 𝑄 = 𝑇 → ( 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ↔ 𝐶 ≤ ( 𝑇 ∨ 𝑇 ) ) ) |
19 |
16 18
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑄 = 𝑇 → 𝐶 ≤ ( 𝑇 ∨ 𝑇 ) ) ) |
20 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
21 |
1
|
dalemtea |
⊢ ( 𝜑 → 𝑇 ∈ 𝐴 ) |
22 |
3 4
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑇 ) = 𝑇 ) |
23 |
20 21 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ∨ 𝑇 ) = 𝑇 ) |
24 |
23
|
breq2d |
⊢ ( 𝜑 → ( 𝐶 ≤ ( 𝑇 ∨ 𝑇 ) ↔ 𝐶 ≤ 𝑇 ) ) |
25 |
19 24
|
sylibd |
⊢ ( 𝜑 → ( 𝑄 = 𝑇 → 𝐶 ≤ 𝑇 ) ) |
26 |
25
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝐶 ≤ 𝑇 → 𝑄 ≠ 𝑇 ) ) |
27 |
15 26
|
mpd |
⊢ ( 𝜑 → 𝑄 ≠ 𝑇 ) |