Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem.ps |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
6 |
|
dalemrotps.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) |
7 |
5
|
dalemccea |
⊢ ( 𝜓 → 𝑐 ∈ 𝐴 ) |
8 |
5
|
dalemddea |
⊢ ( 𝜓 → 𝑑 ∈ 𝐴 ) |
9 |
7 8
|
jca |
⊢ ( 𝜓 → ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ) |
11 |
5
|
dalem-ccly |
⊢ ( 𝜓 → ¬ 𝑐 ≤ 𝑌 ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝑐 ≤ 𝑌 ) |
13 |
1 3 4
|
dalemqrprot |
⊢ ( 𝜑 → ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑅 ) ) |
14 |
6 13
|
eqtr4id |
⊢ ( 𝜑 → 𝑌 = ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝜑 → ( 𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ) ) |
17 |
12 16
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝑐 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ) |
18 |
5
|
dalemccnedd |
⊢ ( 𝜓 → 𝑐 ≠ 𝑑 ) |
19 |
18
|
necomd |
⊢ ( 𝜓 → 𝑑 ≠ 𝑐 ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑑 ≠ 𝑐 ) |
21 |
5
|
dalem-ddly |
⊢ ( 𝜓 → ¬ 𝑑 ≤ 𝑌 ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝑑 ≤ 𝑌 ) |
23 |
14
|
breq2d |
⊢ ( 𝜑 → ( 𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ) ) |
25 |
22 24
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ¬ 𝑑 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ) |
26 |
5
|
dalemclccjdd |
⊢ ( 𝜓 → 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) |
28 |
20 25 27
|
3jca |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) |
29 |
10 17 28
|
3jca |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ( ( 𝑄 ∨ 𝑅 ) ∨ 𝑃 ) ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |