Metamath Proof Explorer


Theorem dalemrotyz

Description: Lemma for dath . Rotate triangles Y = P Q R and Z = S T U to allow reuse of analogous proofs. (Contributed by NM, 19-Aug-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalemrot.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
dalemrot.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
Assertion dalemrotyz ( ( 𝜑𝑌 = 𝑍 ) → ( ( 𝑄 𝑅 ) 𝑃 ) = ( ( 𝑇 𝑈 ) 𝑆 ) )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalemrot.y 𝑌 = ( ( 𝑃 𝑄 ) 𝑅 )
6 dalemrot.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
7 simpr ( ( 𝜑𝑌 = 𝑍 ) → 𝑌 = 𝑍 )
8 1 3 4 dalemqrprot ( 𝜑 → ( ( 𝑄 𝑅 ) 𝑃 ) = ( ( 𝑃 𝑄 ) 𝑅 ) )
9 5 8 eqtr4id ( 𝜑𝑌 = ( ( 𝑄 𝑅 ) 𝑃 ) )
10 9 adantr ( ( 𝜑𝑌 = 𝑍 ) → 𝑌 = ( ( 𝑄 𝑅 ) 𝑃 ) )
11 1 dalemkehl ( 𝜑𝐾 ∈ HL )
12 1 dalemtea ( 𝜑𝑇𝐴 )
13 1 dalemuea ( 𝜑𝑈𝐴 )
14 1 dalemsea ( 𝜑𝑆𝐴 )
15 3 4 hlatjrot ( ( 𝐾 ∈ HL ∧ ( 𝑇𝐴𝑈𝐴𝑆𝐴 ) ) → ( ( 𝑇 𝑈 ) 𝑆 ) = ( ( 𝑆 𝑇 ) 𝑈 ) )
16 11 12 13 14 15 syl13anc ( 𝜑 → ( ( 𝑇 𝑈 ) 𝑆 ) = ( ( 𝑆 𝑇 ) 𝑈 ) )
17 6 16 eqtr4id ( 𝜑𝑍 = ( ( 𝑇 𝑈 ) 𝑆 ) )
18 17 adantr ( ( 𝜑𝑌 = 𝑍 ) → 𝑍 = ( ( 𝑇 𝑈 ) 𝑆 ) )
19 7 10 18 3eqtr3d ( ( 𝜑𝑌 = 𝑍 ) → ( ( 𝑄 𝑅 ) 𝑃 ) = ( ( 𝑇 𝑈 ) 𝑆 ) )