Metamath Proof Explorer


Theorem dalemsly

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalemc.l = ( le ‘ 𝐾 )
dalemc.j = ( join ‘ 𝐾 )
dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
dalemsly.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
Assertion dalemsly ( ( 𝜑𝑌 = 𝑍 ) → 𝑆 𝑌 )

Proof

Step Hyp Ref Expression
1 dalema.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalemc.l = ( le ‘ 𝐾 )
3 dalemc.j = ( join ‘ 𝐾 )
4 dalemc.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalemsly.z 𝑍 = ( ( 𝑆 𝑇 ) 𝑈 )
6 1 dalemkelat ( 𝜑𝐾 ∈ Lat )
7 1 4 dalemseb ( 𝜑𝑆 ∈ ( Base ‘ 𝐾 ) )
8 1 3 4 dalemtjueb ( 𝜑 → ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
9 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
10 9 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑇 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → 𝑆 ( 𝑆 ( 𝑇 𝑈 ) ) )
11 6 7 8 10 syl3anc ( 𝜑𝑆 ( 𝑆 ( 𝑇 𝑈 ) ) )
12 1 dalemkehl ( 𝜑𝐾 ∈ HL )
13 1 dalemsea ( 𝜑𝑆𝐴 )
14 1 dalemtea ( 𝜑𝑇𝐴 )
15 1 dalemuea ( 𝜑𝑈𝐴 )
16 3 4 hlatjass ( ( 𝐾 ∈ HL ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) → ( ( 𝑆 𝑇 ) 𝑈 ) = ( 𝑆 ( 𝑇 𝑈 ) ) )
17 12 13 14 15 16 syl13anc ( 𝜑 → ( ( 𝑆 𝑇 ) 𝑈 ) = ( 𝑆 ( 𝑇 𝑈 ) ) )
18 11 17 breqtrrd ( 𝜑𝑆 ( ( 𝑆 𝑇 ) 𝑈 ) )
19 18 5 breqtrrdi ( 𝜑𝑆 𝑍 )
20 19 adantr ( ( 𝜑𝑌 = 𝑍 ) → 𝑆 𝑍 )
21 simpr ( ( 𝜑𝑌 = 𝑍 ) → 𝑌 = 𝑍 )
22 20 21 breqtrrd ( ( 𝜑𝑌 = 𝑍 ) → 𝑆 𝑌 )