Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
⊢ ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ) ∧ ( 𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂 ) ∧ ( ( ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝐶 ≤ ( 𝑄 ∨ 𝑅 ) ∧ ¬ 𝐶 ≤ ( 𝑅 ∨ 𝑃 ) ) ∧ ( ¬ 𝐶 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝐶 ≤ ( 𝑇 ∨ 𝑈 ) ∧ ¬ 𝐶 ≤ ( 𝑈 ∨ 𝑆 ) ) ∧ ( 𝐶 ≤ ( 𝑃 ∨ 𝑆 ) ∧ 𝐶 ≤ ( 𝑄 ∨ 𝑇 ) ∧ 𝐶 ≤ ( 𝑅 ∨ 𝑈 ) ) ) ) ) |
2 |
|
dalem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dalem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dalem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dalem.ps |
⊢ ( 𝜓 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) ∧ ¬ 𝑐 ≤ 𝑌 ∧ ( 𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) ) ) |
6 |
5
|
dalemddea |
⊢ ( 𝜓 → 𝑑 ∈ 𝐴 ) |
7 |
5
|
dalemccea |
⊢ ( 𝜓 → 𝑐 ∈ 𝐴 ) |
8 |
6 7
|
jca |
⊢ ( 𝜓 → ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ) |
10 |
5
|
dalem-ddly |
⊢ ( 𝜓 → ¬ 𝑑 ≤ 𝑌 ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝑑 ≤ 𝑌 ) |
12 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑌 = 𝑍 ) |
13 |
12
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑑 ≤ 𝑌 ↔ 𝑑 ≤ 𝑍 ) ) |
14 |
11 13
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝑑 ≤ 𝑍 ) |
15 |
5
|
dalemccnedd |
⊢ ( 𝜓 → 𝑐 ≠ 𝑑 ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ≠ 𝑑 ) |
17 |
5
|
dalem-ccly |
⊢ ( 𝜓 → ¬ 𝑐 ≤ 𝑌 ) |
18 |
17
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝑐 ≤ 𝑌 ) |
19 |
12
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ≤ 𝑌 ↔ 𝑐 ≤ 𝑍 ) ) |
20 |
18 19
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ¬ 𝑐 ≤ 𝑍 ) |
21 |
5
|
dalemclccjdd |
⊢ ( 𝜓 → 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) |
22 |
21
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐶 ≤ ( 𝑐 ∨ 𝑑 ) ) |
23 |
1
|
dalemkehl |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐾 ∈ HL ) |
25 |
7
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑐 ∈ 𝐴 ) |
26 |
6
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝑑 ∈ 𝐴 ) |
27 |
3 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴 ) → ( 𝑐 ∨ 𝑑 ) = ( 𝑑 ∨ 𝑐 ) ) |
28 |
24 25 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ∨ 𝑑 ) = ( 𝑑 ∨ 𝑐 ) ) |
29 |
22 28
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → 𝐶 ≤ ( 𝑑 ∨ 𝑐 ) ) |
30 |
16 20 29
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( 𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ ( 𝑑 ∨ 𝑐 ) ) ) |
31 |
9 14 30
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓 ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴 ) ∧ ¬ 𝑑 ≤ 𝑍 ∧ ( 𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ ( 𝑑 ∨ 𝑐 ) ) ) ) |