Metamath Proof Explorer


Theorem dalemswapyzps

Description: Lemma for dath . Swap the Y and Z planes, along with dummy concurrency (center of perspectivity) atoms c and d , to allow reuse of analogous proofs. (Contributed by NM, 17-Aug-2012)

Ref Expression
Hypotheses dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
dalem.l = ( le ‘ 𝐾 )
dalem.j = ( join ‘ 𝐾 )
dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
Assertion dalemswapyzps ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑑𝐴𝑐𝐴 ) ∧ ¬ 𝑑 𝑍 ∧ ( 𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 ( 𝑑 𝑐 ) ) ) )

Proof

Step Hyp Ref Expression
1 dalem.ph ( 𝜑 ↔ ( ( ( 𝐾 ∈ HL ∧ 𝐶 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑇𝐴𝑈𝐴 ) ) ∧ ( 𝑌𝑂𝑍𝑂 ) ∧ ( ( ¬ 𝐶 ( 𝑃 𝑄 ) ∧ ¬ 𝐶 ( 𝑄 𝑅 ) ∧ ¬ 𝐶 ( 𝑅 𝑃 ) ) ∧ ( ¬ 𝐶 ( 𝑆 𝑇 ) ∧ ¬ 𝐶 ( 𝑇 𝑈 ) ∧ ¬ 𝐶 ( 𝑈 𝑆 ) ) ∧ ( 𝐶 ( 𝑃 𝑆 ) ∧ 𝐶 ( 𝑄 𝑇 ) ∧ 𝐶 ( 𝑅 𝑈 ) ) ) ) )
2 dalem.l = ( le ‘ 𝐾 )
3 dalem.j = ( join ‘ 𝐾 )
4 dalem.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dalem.ps ( 𝜓 ↔ ( ( 𝑐𝐴𝑑𝐴 ) ∧ ¬ 𝑐 𝑌 ∧ ( 𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 ( 𝑐 𝑑 ) ) ) )
6 5 dalemddea ( 𝜓𝑑𝐴 )
7 5 dalemccea ( 𝜓𝑐𝐴 )
8 6 7 jca ( 𝜓 → ( 𝑑𝐴𝑐𝐴 ) )
9 8 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑑𝐴𝑐𝐴 ) )
10 5 dalem-ddly ( 𝜓 → ¬ 𝑑 𝑌 )
11 10 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝑑 𝑌 )
12 simp2 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑌 = 𝑍 )
13 12 breq2d ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑑 𝑌𝑑 𝑍 ) )
14 11 13 mtbid ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝑑 𝑍 )
15 5 dalemccnedd ( 𝜓𝑐𝑑 )
16 15 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐𝑑 )
17 5 dalem-ccly ( 𝜓 → ¬ 𝑐 𝑌 )
18 17 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝑐 𝑌 )
19 12 breq2d ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝑌𝑐 𝑍 ) )
20 18 19 mtbid ( ( 𝜑𝑌 = 𝑍𝜓 ) → ¬ 𝑐 𝑍 )
21 5 dalemclccjdd ( 𝜓𝐶 ( 𝑐 𝑑 ) )
22 21 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐶 ( 𝑐 𝑑 ) )
23 1 dalemkehl ( 𝜑𝐾 ∈ HL )
24 23 3ad2ant1 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐾 ∈ HL )
25 7 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑐𝐴 )
26 6 3ad2ant3 ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝑑𝐴 )
27 3 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑐𝐴𝑑𝐴 ) → ( 𝑐 𝑑 ) = ( 𝑑 𝑐 ) )
28 24 25 26 27 syl3anc ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐 𝑑 ) = ( 𝑑 𝑐 ) )
29 22 28 breqtrd ( ( 𝜑𝑌 = 𝑍𝜓 ) → 𝐶 ( 𝑑 𝑐 ) )
30 16 20 29 3jca ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( 𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 ( 𝑑 𝑐 ) ) )
31 9 14 30 3jca ( ( 𝜑𝑌 = 𝑍𝜓 ) → ( ( 𝑑𝐴𝑐𝐴 ) ∧ ¬ 𝑑 𝑍 ∧ ( 𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 ( 𝑑 𝑐 ) ) ) )