Metamath Proof Explorer


Theorem daraptiALT

Description: Alternate proof of darapti , shorter but using more axioms. See comment of dariiALT . (Contributed by David A. Wheeler, 27-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses darapti.maj 𝑥 ( 𝜑𝜓 )
darapti.min 𝑥 ( 𝜑𝜒 )
darapti.e 𝑥 𝜑
Assertion daraptiALT 𝑥 ( 𝜒𝜓 )

Proof

Step Hyp Ref Expression
1 darapti.maj 𝑥 ( 𝜑𝜓 )
2 darapti.min 𝑥 ( 𝜑𝜒 )
3 darapti.e 𝑥 𝜑
4 2 spi ( 𝜑𝜒 )
5 1 spi ( 𝜑𝜓 )
6 4 5 jca ( 𝜑 → ( 𝜒𝜓 ) )
7 3 6 eximii 𝑥 ( 𝜒𝜓 )