Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrmhm.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrmhm.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrn0.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
5 |
|
dchrn0.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
6 |
|
dchr1cl.o |
⊢ 1 = ( 𝑘 ∈ 𝐵 ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) |
7 |
|
dchr1cl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
8 |
|
eqidd |
⊢ ( 𝑘 = 𝑥 → 1 = 1 ) |
9 |
|
eqidd |
⊢ ( 𝑘 = 𝑦 → 1 = 1 ) |
10 |
|
eqidd |
⊢ ( 𝑘 = ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) → 1 = 1 ) |
11 |
|
eqidd |
⊢ ( 𝑘 = ( 1r ‘ 𝑍 ) → 1 = 1 ) |
12 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 1 ∈ ℂ ) |
13 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
14 |
13
|
eqcomi |
⊢ 1 = ( 1 · 1 ) |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 1 = ( 1 · 1 ) ) |
16 |
|
eqidd |
⊢ ( 𝜑 → 1 = 1 ) |
17 |
1 2 4 5 7 3 8 9 10 11 12 15 16
|
dchrelbasd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ if ( 𝑘 ∈ 𝑈 , 1 , 0 ) ) ∈ 𝐷 ) |
18 |
6 17
|
eqeltrid |
⊢ ( 𝜑 → 1 ∈ 𝐷 ) |