Step |
Hyp |
Ref |
Expression |
1 |
|
dchr1re.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchr1re.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchr1re.o |
⊢ 1 = ( 0g ‘ 𝐺 ) |
4 |
|
dchr1re.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
5 |
|
dchr1re.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
7 |
1
|
dchrabl |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel ) |
8 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
9 |
6 3
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 1 ∈ ( Base ‘ 𝐺 ) ) |
10 |
5 7 8 9
|
4syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝐺 ) ) |
11 |
1 2 6 4 10
|
dchrf |
⊢ ( 𝜑 → 1 : 𝐵 ⟶ ℂ ) |
12 |
11
|
ffnd |
⊢ ( 𝜑 → 1 Fn 𝐵 ) |
13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) = 0 ) → ( 1 ‘ 𝑥 ) = 0 ) |
14 |
|
0re |
⊢ 0 ∈ ℝ |
15 |
13 14
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) = 0 ) → ( 1 ‘ 𝑥 ) ∈ ℝ ) |
16 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
17 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) ≠ 0 ) → 𝑁 ∈ ℕ ) |
18 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝐺 ) ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
20 |
1 2 6 4 16 18 19
|
dchrn0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1 ‘ 𝑥 ) ≠ 0 ↔ 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) |
21 |
20
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) ≠ 0 ) → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) |
22 |
1 2 3 16 17 21
|
dchr1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) ≠ 0 ) → ( 1 ‘ 𝑥 ) = 1 ) |
23 |
|
1re |
⊢ 1 ∈ ℝ |
24 |
22 23
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 1 ‘ 𝑥 ) ≠ 0 ) → ( 1 ‘ 𝑥 ) ∈ ℝ ) |
25 |
15 24
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 ‘ 𝑥 ) ∈ ℝ ) |
26 |
25
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 1 ‘ 𝑥 ) ∈ ℝ ) |
27 |
|
ffnfv |
⊢ ( 1 : 𝐵 ⟶ ℝ ↔ ( 1 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 1 ‘ 𝑥 ) ∈ ℝ ) ) |
28 |
12 26 27
|
sylanbrc |
⊢ ( 𝜑 → 1 : 𝐵 ⟶ ℝ ) |