Metamath Proof Explorer


Theorem dchr1re

Description: The principal Dirichlet character is a real character. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses dchr1re.g 𝐺 = ( DChr ‘ 𝑁 )
dchr1re.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
dchr1re.o 1 = ( 0g𝐺 )
dchr1re.b 𝐵 = ( Base ‘ 𝑍 )
dchr1re.n ( 𝜑𝑁 ∈ ℕ )
Assertion dchr1re ( 𝜑1 : 𝐵 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 dchr1re.g 𝐺 = ( DChr ‘ 𝑁 )
2 dchr1re.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
3 dchr1re.o 1 = ( 0g𝐺 )
4 dchr1re.b 𝐵 = ( Base ‘ 𝑍 )
5 dchr1re.n ( 𝜑𝑁 ∈ ℕ )
6 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
7 1 dchrabl ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel )
8 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
9 6 3 grpidcl ( 𝐺 ∈ Grp → 1 ∈ ( Base ‘ 𝐺 ) )
10 5 7 8 9 4syl ( 𝜑1 ∈ ( Base ‘ 𝐺 ) )
11 1 2 6 4 10 dchrf ( 𝜑1 : 𝐵 ⟶ ℂ )
12 11 ffnd ( 𝜑1 Fn 𝐵 )
13 simpr ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1𝑥 ) = 0 ) → ( 1𝑥 ) = 0 )
14 0re 0 ∈ ℝ
15 13 14 eqeltrdi ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1𝑥 ) = 0 ) → ( 1𝑥 ) ∈ ℝ )
16 eqid ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 )
17 5 ad2antrr ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1𝑥 ) ≠ 0 ) → 𝑁 ∈ ℕ )
18 10 adantr ( ( 𝜑𝑥𝐵 ) → 1 ∈ ( Base ‘ 𝐺 ) )
19 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
20 1 2 6 4 16 18 19 dchrn0 ( ( 𝜑𝑥𝐵 ) → ( ( 1𝑥 ) ≠ 0 ↔ 𝑥 ∈ ( Unit ‘ 𝑍 ) ) )
21 20 biimpa ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1𝑥 ) ≠ 0 ) → 𝑥 ∈ ( Unit ‘ 𝑍 ) )
22 1 2 3 16 17 21 dchr1 ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1𝑥 ) ≠ 0 ) → ( 1𝑥 ) = 1 )
23 1re 1 ∈ ℝ
24 22 23 eqeltrdi ( ( ( 𝜑𝑥𝐵 ) ∧ ( 1𝑥 ) ≠ 0 ) → ( 1𝑥 ) ∈ ℝ )
25 15 24 pm2.61dane ( ( 𝜑𝑥𝐵 ) → ( 1𝑥 ) ∈ ℝ )
26 25 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 ( 1𝑥 ) ∈ ℝ )
27 ffnfv ( 1 : 𝐵 ⟶ ℝ ↔ ( 1 Fn 𝐵 ∧ ∀ 𝑥𝐵 ( 1𝑥 ) ∈ ℝ ) )
28 12 26 27 sylanbrc ( 𝜑1 : 𝐵 ⟶ ℝ )