Step |
Hyp |
Ref |
Expression |
1 |
|
dchr2sum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchr2sum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchr2sum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchr2sum.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
5 |
|
dchr2sum.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
6 |
|
dchr2sum.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
8 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
9 |
5 8
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
10 |
1
|
dchrabl |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel ) |
11 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
12 |
9 10 11
|
3syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
13 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
14 |
3 13
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) → ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) ∈ 𝐷 ) |
15 |
12 5 6 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) ∈ 𝐷 ) |
16 |
1 2 3 7 15 4
|
dchrsum |
⊢ ( 𝜑 → Σ 𝑎 ∈ 𝐵 ( ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) ‘ 𝑎 ) = if ( ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) = ( 0g ‘ 𝐺 ) , ( ϕ ‘ 𝑁 ) , 0 ) ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑋 ∈ 𝐷 ) |
18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑌 ∈ 𝐷 ) |
19 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
20 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
21 |
3 19 20 13
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) → ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
22 |
17 18 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑁 ∈ ℕ ) |
24 |
23 10 11
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
25 |
3 20
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐷 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐷 ) |
26 |
24 18 25
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝐷 ) |
27 |
1 2 3 19 17 26
|
dchrmul |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 ∘f · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
28 |
22 27
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) = ( 𝑋 ∘f · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
29 |
28
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) ‘ 𝑎 ) = ( ( 𝑋 ∘f · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑎 ) ) |
30 |
1 2 3 4 17
|
dchrf |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑋 : 𝐵 ⟶ ℂ ) |
31 |
30
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑋 Fn 𝐵 ) |
32 |
1 2 3 4 26
|
dchrf |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) : 𝐵 ⟶ ℂ ) |
33 |
32
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) Fn 𝐵 ) |
34 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝐵 ∈ V ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
37 |
|
fnfvof |
⊢ ( ( ( 𝑋 Fn 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) Fn 𝐵 ) ∧ ( 𝐵 ∈ V ∧ 𝑎 ∈ 𝐵 ) ) → ( ( 𝑋 ∘f · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑎 ) = ( ( 𝑋 ‘ 𝑎 ) · ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ‘ 𝑎 ) ) ) |
38 |
31 33 35 36 37
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑋 ∘f · ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ‘ 𝑎 ) = ( ( 𝑋 ‘ 𝑎 ) · ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ‘ 𝑎 ) ) ) |
39 |
1 3 18 20
|
dchrinv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( ∗ ∘ 𝑌 ) ) |
40 |
39
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ‘ 𝑎 ) = ( ( ∗ ∘ 𝑌 ) ‘ 𝑎 ) ) |
41 |
1 2 3 4 18
|
dchrf |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → 𝑌 : 𝐵 ⟶ ℂ ) |
42 |
|
fvco3 |
⊢ ( ( 𝑌 : 𝐵 ⟶ ℂ ∧ 𝑎 ∈ 𝐵 ) → ( ( ∗ ∘ 𝑌 ) ‘ 𝑎 ) = ( ∗ ‘ ( 𝑌 ‘ 𝑎 ) ) ) |
43 |
41 36 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ∗ ∘ 𝑌 ) ‘ 𝑎 ) = ( ∗ ‘ ( 𝑌 ‘ 𝑎 ) ) ) |
44 |
40 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ‘ 𝑎 ) = ( ∗ ‘ ( 𝑌 ‘ 𝑎 ) ) ) |
45 |
44
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑎 ) · ( ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ‘ 𝑎 ) ) = ( ( 𝑋 ‘ 𝑎 ) · ( ∗ ‘ ( 𝑌 ‘ 𝑎 ) ) ) ) |
46 |
29 38 45
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) ‘ 𝑎 ) = ( ( 𝑋 ‘ 𝑎 ) · ( ∗ ‘ ( 𝑌 ‘ 𝑎 ) ) ) ) |
47 |
46
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑎 ∈ 𝐵 ( ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) ‘ 𝑎 ) = Σ 𝑎 ∈ 𝐵 ( ( 𝑋 ‘ 𝑎 ) · ( ∗ ‘ ( 𝑌 ‘ 𝑎 ) ) ) ) |
48 |
3 7 13
|
grpsubeq0 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) → ( ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) = ( 0g ‘ 𝐺 ) ↔ 𝑋 = 𝑌 ) ) |
49 |
12 5 6 48
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) = ( 0g ‘ 𝐺 ) ↔ 𝑋 = 𝑌 ) ) |
50 |
49
|
ifbid |
⊢ ( 𝜑 → if ( ( 𝑋 ( -g ‘ 𝐺 ) 𝑌 ) = ( 0g ‘ 𝐺 ) , ( ϕ ‘ 𝑁 ) , 0 ) = if ( 𝑋 = 𝑌 , ( ϕ ‘ 𝑁 ) , 0 ) ) |
51 |
16 47 50
|
3eqtr3d |
⊢ ( 𝜑 → Σ 𝑎 ∈ 𝐵 ( ( 𝑋 ‘ 𝑎 ) · ( ∗ ‘ ( 𝑌 ‘ 𝑎 ) ) ) = if ( 𝑋 = 𝑌 , ( ϕ ‘ 𝑁 ) , 0 ) ) |