Step |
Hyp |
Ref |
Expression |
1 |
|
dchrabl.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
eqidd |
⊢ ( 𝑁 ∈ ℕ → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
3 |
|
eqidd |
⊢ ( 𝑁 ∈ ℕ → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
4 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑁 ) = ( ℤ/nℤ ‘ 𝑁 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
8 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
9 |
1 4 5 6 7 8
|
dchrmulcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
10 |
|
fvexd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ V ) |
11 |
|
eqid |
⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
12 |
1 4 5 11 7
|
dchrf |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
13 |
12
|
3adant3r3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑥 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
14 |
1 4 5 11 8
|
dchrf |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → 𝑦 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
15 |
14
|
3adant3r3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑦 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
16 |
|
simpr3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
17 |
1 4 5 11 16
|
dchrf |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑧 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
18 |
|
mulass |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) → ( ( 𝑎 · 𝑏 ) · 𝑐 ) = ( 𝑎 · ( 𝑏 · 𝑐 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ ) ) → ( ( 𝑎 · 𝑏 ) · 𝑐 ) = ( 𝑎 · ( 𝑏 · 𝑐 ) ) ) |
20 |
10 13 15 17 19
|
caofass |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ∘f · 𝑦 ) ∘f · 𝑧 ) = ( 𝑥 ∘f · ( 𝑦 ∘f · 𝑧 ) ) ) |
21 |
|
simpr1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
22 |
|
simpr2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
23 |
1 4 5 6 21 22
|
dchrmul |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ∘f · 𝑦 ) ) |
24 |
23
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∘f · 𝑧 ) = ( ( 𝑥 ∘f · 𝑦 ) ∘f · 𝑧 ) ) |
25 |
1 4 5 6 22 16
|
dchrmul |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ∘f · 𝑧 ) ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ∘f · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ∘f · ( 𝑦 ∘f · 𝑧 ) ) ) |
27 |
20 24 26
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∘f · 𝑧 ) = ( 𝑥 ∘f · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
28 |
9
|
3adant3r3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
29 |
1 4 5 6 28 16
|
dchrmul |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∘f · 𝑧 ) ) |
30 |
1 4 5 6 22 16
|
dchrmulcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ) |
31 |
1 4 5 6 21 30
|
dchrmul |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑥 ∘f · ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
32 |
27 29 31
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
33 |
|
eqid |
⊢ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
34 |
|
eqid |
⊢ ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , 1 , 0 ) ) = ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , 1 , 0 ) ) |
35 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
36 |
1 4 5 11 33 34 35
|
dchr1cl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , 1 , 0 ) ) ∈ ( Base ‘ 𝐺 ) ) |
37 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
38 |
1 4 5 11 33 34 6 37
|
dchrmulid2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , 1 , 0 ) ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
39 |
|
eqid |
⊢ ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , ( 1 / ( 𝑥 ‘ 𝑘 ) ) , 0 ) ) = ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , ( 1 / ( 𝑥 ‘ 𝑘 ) ) , 0 ) ) |
40 |
1 4 5 11 33 34 6 37 39
|
dchrinvcl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , ( 1 / ( 𝑥 ‘ 𝑘 ) ) , 0 ) ) ∈ ( Base ‘ 𝐺 ) ∧ ( ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , ( 1 / ( 𝑥 ‘ 𝑘 ) ) , 0 ) ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , 1 , 0 ) ) ) ) |
41 |
40
|
simpld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , ( 1 / ( 𝑥 ‘ 𝑘 ) ) , 0 ) ) ∈ ( Base ‘ 𝐺 ) ) |
42 |
40
|
simprd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , ( 1 / ( 𝑥 ‘ 𝑘 ) ) , 0 ) ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑘 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ↦ if ( 𝑘 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) , 1 , 0 ) ) ) |
43 |
2 3 9 32 36 38 41 42
|
isgrpd |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Grp ) |
44 |
|
fvexd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ V ) |
45 |
|
mulcom |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 𝑎 · 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ∧ ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) ) → ( 𝑎 · 𝑏 ) = ( 𝑏 · 𝑎 ) ) |
47 |
44 12 14 46
|
caofcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∘f · 𝑦 ) = ( 𝑦 ∘f · 𝑥 ) ) |
48 |
1 4 5 6 7 8
|
dchrmul |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ∘f · 𝑦 ) ) |
49 |
1 4 5 6 8 7
|
dchrmul |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ∘f · 𝑥 ) ) |
50 |
47 48 49
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
51 |
2 3 43 50
|
isabld |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel ) |