Step |
Hyp |
Ref |
Expression |
1 |
|
dchrabs.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrabs.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
3 |
|
dchrabs.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
4 |
|
dchrabs.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
5 |
|
dchrabs.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
6 |
|
dchrabs.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
8 |
1 4 2 7 3
|
dchrf |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ) |
9 |
7 5
|
unitss |
⊢ 𝑈 ⊆ ( Base ‘ 𝑍 ) |
10 |
9 6
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑍 ) ) |
11 |
8 10
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑋 ‘ 𝐴 ) ∈ ℂ ) |
12 |
1 4 2 7 5 3 10
|
dchrn0 |
⊢ ( 𝜑 → ( ( 𝑋 ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ∈ 𝑈 ) ) |
13 |
6 12
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 ‘ 𝐴 ) ≠ 0 ) |
14 |
11 13
|
absrpcld |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ∈ ℝ+ ) |
15 |
1 2
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
16 |
4 7
|
znfi |
⊢ ( 𝑁 ∈ ℕ → ( Base ‘ 𝑍 ) ∈ Fin ) |
17 |
3 15 16
|
3syl |
⊢ ( 𝜑 → ( Base ‘ 𝑍 ) ∈ Fin ) |
18 |
|
ssfi |
⊢ ( ( ( Base ‘ 𝑍 ) ∈ Fin ∧ 𝑈 ⊆ ( Base ‘ 𝑍 ) ) → 𝑈 ∈ Fin ) |
19 |
17 9 18
|
sylancl |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
20 |
|
hashcl |
⊢ ( 𝑈 ∈ Fin → ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) |
21 |
19 20
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) |
22 |
21
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ∈ ℂ ) |
24 |
6
|
ne0d |
⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
25 |
|
hashnncl |
⊢ ( 𝑈 ∈ Fin → ( ( ♯ ‘ 𝑈 ) ∈ ℕ ↔ 𝑈 ≠ ∅ ) ) |
26 |
19 25
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) ∈ ℕ ↔ 𝑈 ≠ ∅ ) ) |
27 |
24 26
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ∈ ℕ ) |
28 |
27
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ≠ 0 ) |
29 |
23 28
|
reccld |
⊢ ( 𝜑 → ( 1 / ( ♯ ‘ 𝑈 ) ) ∈ ℂ ) |
30 |
14 22 29
|
cxpmuld |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 ( ( ♯ ‘ 𝑈 ) · ( 1 / ( ♯ ‘ 𝑈 ) ) ) ) = ( ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 ( ♯ ‘ 𝑈 ) ) ↑𝑐 ( 1 / ( ♯ ‘ 𝑈 ) ) ) ) |
31 |
23 28
|
recidd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) · ( 1 / ( ♯ ‘ 𝑈 ) ) ) = 1 ) |
32 |
31
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 ( ( ♯ ‘ 𝑈 ) · ( 1 / ( ♯ ‘ 𝑈 ) ) ) ) = ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 1 ) ) |
33 |
11
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ∈ ℝ ) |
34 |
33
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ∈ ℂ ) |
35 |
|
cxpexp |
⊢ ( ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) → ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 ( ♯ ‘ 𝑈 ) ) = ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑ ( ♯ ‘ 𝑈 ) ) ) |
36 |
34 21 35
|
syl2anc |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 ( ♯ ‘ 𝑈 ) ) = ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑ ( ♯ ‘ 𝑈 ) ) ) |
37 |
11 21
|
absexpd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑈 ) ) ) = ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑ ( ♯ ‘ 𝑈 ) ) ) |
38 |
|
cnring |
⊢ ℂfld ∈ Ring |
39 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
40 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
41 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
42 |
39 40 41
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
43 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
44 |
42 43
|
unitsubm |
⊢ ( ℂfld ∈ Ring → ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
45 |
38 44
|
mp1i |
⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
46 |
|
eldifsn |
⊢ ( ( 𝑋 ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 ‘ 𝐴 ) ∈ ℂ ∧ ( 𝑋 ‘ 𝐴 ) ≠ 0 ) ) |
47 |
11 13 46
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ) |
48 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
49 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
50 |
|
eqid |
⊢ ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) = ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
51 |
48 49 50
|
submmulg |
⊢ ( ( ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ ( ♯ ‘ 𝑈 ) ∈ ℕ0 ∧ ( 𝑋 ‘ 𝐴 ) ∈ ( ℂ ∖ { 0 } ) ) → ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ( 𝑋 ‘ 𝐴 ) ) ) |
52 |
45 21 47 51
|
syl3anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ( 𝑋 ‘ 𝐴 ) ) ) |
53 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) = ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) |
54 |
1 4 2 5 53 49 3
|
dchrghm |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝑈 ) ∈ ( ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ) |
55 |
21
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) ∈ ℤ ) |
56 |
5 53
|
unitgrpbas |
⊢ 𝑈 = ( Base ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) |
57 |
|
eqid |
⊢ ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) = ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) |
58 |
56 57 50
|
ghmmulg |
⊢ ( ( ( 𝑋 ↾ 𝑈 ) ∈ ( ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) GrpHom ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ∧ ( ♯ ‘ 𝑈 ) ∈ ℤ ∧ 𝐴 ∈ 𝑈 ) → ( ( 𝑋 ↾ 𝑈 ) ‘ ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) 𝐴 ) ) = ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ( ( 𝑋 ↾ 𝑈 ) ‘ 𝐴 ) ) ) |
59 |
54 55 6 58
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 ↾ 𝑈 ) ‘ ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) 𝐴 ) ) = ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ( ( 𝑋 ↾ 𝑈 ) ‘ 𝐴 ) ) ) |
60 |
3 15
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
61 |
60
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
62 |
4
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
63 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
64 |
61 62 63
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
65 |
5 53
|
unitgrp |
⊢ ( 𝑍 ∈ Ring → ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ∈ Grp ) |
66 |
64 65
|
syl |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ∈ Grp ) |
67 |
|
eqid |
⊢ ( od ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) = ( od ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) |
68 |
56 67
|
oddvds2 |
⊢ ( ( ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ∈ Grp ∧ 𝑈 ∈ Fin ∧ 𝐴 ∈ 𝑈 ) → ( ( od ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ‘ 𝐴 ) ∥ ( ♯ ‘ 𝑈 ) ) |
69 |
66 19 6 68
|
syl3anc |
⊢ ( 𝜑 → ( ( od ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ‘ 𝐴 ) ∥ ( ♯ ‘ 𝑈 ) ) |
70 |
|
eqid |
⊢ ( 0g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) = ( 0g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) |
71 |
56 67 57 70
|
oddvds |
⊢ ( ( ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ∈ Grp ∧ 𝐴 ∈ 𝑈 ∧ ( ♯ ‘ 𝑈 ) ∈ ℤ ) → ( ( ( od ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ‘ 𝐴 ) ∥ ( ♯ ‘ 𝑈 ) ↔ ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) 𝐴 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ) ) |
72 |
66 6 55 71
|
syl3anc |
⊢ ( 𝜑 → ( ( ( od ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ‘ 𝐴 ) ∥ ( ♯ ‘ 𝑈 ) ↔ ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) 𝐴 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ) ) |
73 |
69 72
|
mpbid |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) 𝐴 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ) |
74 |
|
eqid |
⊢ ( 1r ‘ 𝑍 ) = ( 1r ‘ 𝑍 ) |
75 |
5 53 74
|
unitgrpid |
⊢ ( 𝑍 ∈ Ring → ( 1r ‘ 𝑍 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ) |
76 |
64 75
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑍 ) = ( 0g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) ) |
77 |
73 76
|
eqtr4d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) 𝐴 ) = ( 1r ‘ 𝑍 ) ) |
78 |
77
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑋 ↾ 𝑈 ) ‘ ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) ) 𝐴 ) ) = ( ( 𝑋 ↾ 𝑈 ) ‘ ( 1r ‘ 𝑍 ) ) ) |
79 |
6
|
fvresd |
⊢ ( 𝜑 → ( ( 𝑋 ↾ 𝑈 ) ‘ 𝐴 ) = ( 𝑋 ‘ 𝐴 ) ) |
80 |
79
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ( ( 𝑋 ↾ 𝑈 ) ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ( 𝑋 ‘ 𝐴 ) ) ) |
81 |
59 78 80
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 ↾ 𝑈 ) ‘ ( 1r ‘ 𝑍 ) ) = ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) ( 𝑋 ‘ 𝐴 ) ) ) |
82 |
5 74
|
1unit |
⊢ ( 𝑍 ∈ Ring → ( 1r ‘ 𝑍 ) ∈ 𝑈 ) |
83 |
|
fvres |
⊢ ( ( 1r ‘ 𝑍 ) ∈ 𝑈 → ( ( 𝑋 ↾ 𝑈 ) ‘ ( 1r ‘ 𝑍 ) ) = ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) ) |
84 |
64 82 83
|
3syl |
⊢ ( 𝜑 → ( ( 𝑋 ↾ 𝑈 ) ‘ ( 1r ‘ 𝑍 ) ) = ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) ) |
85 |
52 81 84
|
3eqtr2d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ 𝐴 ) ) = ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) ) |
86 |
|
cnfldexp |
⊢ ( ( ( 𝑋 ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ 𝐴 ) ) = ( ( 𝑋 ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑈 ) ) ) |
87 |
11 21 86
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ 𝐴 ) ) = ( ( 𝑋 ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑈 ) ) ) |
88 |
1 4 2
|
dchrmhm |
⊢ 𝐷 ⊆ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) |
89 |
88 3
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
90 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
91 |
90 74
|
ringidval |
⊢ ( 1r ‘ 𝑍 ) = ( 0g ‘ ( mulGrp ‘ 𝑍 ) ) |
92 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
93 |
43 92
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
94 |
91 93
|
mhm0 |
⊢ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
95 |
89 94
|
syl |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) |
96 |
85 87 95
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑋 ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑈 ) ) = 1 ) |
97 |
96
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑈 ) ) ) = ( abs ‘ 1 ) ) |
98 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
99 |
97 98
|
eqtrdi |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 ‘ 𝐴 ) ↑ ( ♯ ‘ 𝑈 ) ) ) = 1 ) |
100 |
36 37 99
|
3eqtr2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 ( ♯ ‘ 𝑈 ) ) = 1 ) |
101 |
100
|
oveq1d |
⊢ ( 𝜑 → ( ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 ( ♯ ‘ 𝑈 ) ) ↑𝑐 ( 1 / ( ♯ ‘ 𝑈 ) ) ) = ( 1 ↑𝑐 ( 1 / ( ♯ ‘ 𝑈 ) ) ) ) |
102 |
30 32 101
|
3eqtr3d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 1 ) = ( 1 ↑𝑐 ( 1 / ( ♯ ‘ 𝑈 ) ) ) ) |
103 |
34
|
cxp1d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ↑𝑐 1 ) = ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) ) |
104 |
29
|
1cxpd |
⊢ ( 𝜑 → ( 1 ↑𝑐 ( 1 / ( ♯ ‘ 𝑈 ) ) ) = 1 ) |
105 |
102 103 104
|
3eqtr3d |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 ‘ 𝐴 ) ) = 1 ) |