Step |
Hyp |
Ref |
Expression |
1 |
|
dchrval.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrval.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrval.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
4 |
|
dchrval.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
5 |
|
dchrval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
6 |
|
dchrbas.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
7 |
|
eqidd |
⊢ ( 𝜑 → { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } = { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) |
8 |
1 2 3 4 5 7
|
dchrval |
⊢ ( 𝜑 → 𝐺 = { 〈 ( Base ‘ ndx ) , { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } × { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) ) 〉 } ) |
9 |
8
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } × { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) ) 〉 } ) ) |
10 |
|
ovex |
⊢ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∈ V |
11 |
10
|
rabex |
⊢ { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ∈ V |
12 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } × { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) ) 〉 } = { 〈 ( Base ‘ ndx ) , { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } × { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) ) 〉 } |
13 |
12
|
grpbase |
⊢ ( { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ∈ V → { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } × { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) ) 〉 } ) ) |
14 |
11 13
|
ax-mp |
⊢ { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } = ( Base ‘ { 〈 ( Base ‘ ndx ) , { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } 〉 , 〈 ( +g ‘ ndx ) , ( ∘f · ↾ ( { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } × { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) ) 〉 } ) |
15 |
9 6 14
|
3eqtr4g |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∣ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑥 } ) |