Step |
Hyp |
Ref |
Expression |
1 |
|
dchrval.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrval.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrval.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
4 |
|
dchrval.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
5 |
|
dchrval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
6 |
|
dchrbas.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
7 |
1 2 3 4 5 6
|
dchrelbas |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑋 ) ) ) |
8 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
9 |
8 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) |
10 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
11 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
12 |
10 11
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
13 |
9 12
|
mhmf |
⊢ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) → 𝑋 : 𝐵 ⟶ ℂ ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → 𝑋 : 𝐵 ⟶ ℂ ) |
15 |
14
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → Fun 𝑋 ) |
16 |
|
funssres |
⊢ ( ( Fun 𝑋 ∧ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑋 ) → ( 𝑋 ↾ dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) |
17 |
15 16
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑋 ) → ( 𝑋 ↾ dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) |
18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ ( 𝑋 ↾ dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) → ( 𝑋 ↾ dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) |
19 |
|
resss |
⊢ ( 𝑋 ↾ dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) ⊆ 𝑋 |
20 |
18 19
|
eqsstrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ ( 𝑋 ↾ dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) → ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑋 ) |
21 |
17 20
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑋 ↔ ( 𝑋 ↾ dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) ) |
22 |
|
0cn |
⊢ 0 ∈ ℂ |
23 |
|
fconst6g |
⊢ ( 0 ∈ ℂ → ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) : ( 𝐵 ∖ 𝑈 ) ⟶ ℂ ) |
24 |
22 23
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) : ( 𝐵 ∖ 𝑈 ) ⟶ ℂ ) |
25 |
24
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) = ( 𝐵 ∖ 𝑈 ) ) |
26 |
25
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( 𝑋 ↾ dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) = ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) ) |
27 |
26
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ( 𝑋 ↾ dom ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ↔ ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ) ) |
28 |
|
difss |
⊢ ( 𝐵 ∖ 𝑈 ) ⊆ 𝐵 |
29 |
|
fssres |
⊢ ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( 𝐵 ∖ 𝑈 ) ⊆ 𝐵 ) → ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) : ( 𝐵 ∖ 𝑈 ) ⟶ ℂ ) |
30 |
14 28 29
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) : ( 𝐵 ∖ 𝑈 ) ⟶ ℂ ) |
31 |
30
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) Fn ( 𝐵 ∖ 𝑈 ) ) |
32 |
24
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) Fn ( 𝐵 ∖ 𝑈 ) ) |
33 |
|
eqfnfv |
⊢ ( ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) Fn ( 𝐵 ∖ 𝑈 ) ∧ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) Fn ( 𝐵 ∖ 𝑈 ) ) → ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) ‘ 𝑥 ) = ( ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ‘ 𝑥 ) ) ) |
34 |
31 32 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) ‘ 𝑥 ) = ( ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ‘ 𝑥 ) ) ) |
35 |
|
fvres |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) → ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) ‘ 𝑥 ) = ( 𝑋 ‘ 𝑥 ) ) |
36 |
|
c0ex |
⊢ 0 ∈ V |
37 |
36
|
fvconst2 |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) → ( ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ‘ 𝑥 ) = 0 ) |
38 |
35 37
|
eqeq12d |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) → ( ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) ‘ 𝑥 ) = ( ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ‘ 𝑥 ) ↔ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
39 |
38
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) ‘ 𝑥 ) = ( ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ( 𝑋 ‘ 𝑥 ) = 0 ) |
40 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈 ) ) |
41 |
40
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
42 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ 𝐵 → ( ¬ 𝑥 ∈ 𝑈 → ( 𝑋 ‘ 𝑥 ) = 0 ) ) ) |
43 |
|
con1b |
⊢ ( ( ¬ 𝑥 ∈ 𝑈 → ( 𝑋 ‘ 𝑥 ) = 0 ) ↔ ( ¬ ( 𝑋 ‘ 𝑥 ) = 0 → 𝑥 ∈ 𝑈 ) ) |
44 |
|
df-ne |
⊢ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ↔ ¬ ( 𝑋 ‘ 𝑥 ) = 0 ) |
45 |
44
|
imbi1i |
⊢ ( ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ↔ ( ¬ ( 𝑋 ‘ 𝑥 ) = 0 → 𝑥 ∈ 𝑈 ) ) |
46 |
43 45
|
bitr4i |
⊢ ( ( ¬ 𝑥 ∈ 𝑈 → ( 𝑋 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) |
47 |
46
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐵 → ( ¬ 𝑥 ∈ 𝑈 → ( 𝑋 ‘ 𝑥 ) = 0 ) ) ↔ ( 𝑥 ∈ 𝐵 → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) |
48 |
41 42 47
|
3bitri |
⊢ ( ( 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ 𝐵 → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) |
49 |
48
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ( 𝑋 ‘ 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) |
50 |
39 49
|
bitri |
⊢ ( ∀ 𝑥 ∈ ( 𝐵 ∖ 𝑈 ) ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) ‘ 𝑥 ) = ( ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) |
51 |
34 50
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ( 𝑋 ↾ ( 𝐵 ∖ 𝑈 ) ) = ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) |
52 |
21 27 51
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑋 ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) |
53 |
52
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ( ( 𝐵 ∖ 𝑈 ) × { 0 } ) ⊆ 𝑋 ) ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ) |
54 |
7 53
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ) |