Step |
Hyp |
Ref |
Expression |
1 |
|
dchrval.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrval.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrval.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
4 |
|
dchrval.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
5 |
|
dchrval.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
6 |
|
dchrbas.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
7 |
1 2 3 4 5 6
|
dchrelbas2 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑋 ‘ 𝑧 ) = ( 𝑋 ‘ 𝑥 ) ) |
9 |
8
|
neeq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑋 ‘ 𝑧 ) ≠ 0 ↔ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) |
10 |
|
eleq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ 𝑈 ↔ 𝑥 ∈ 𝑈 ) ) |
11 |
9 10
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ↔ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) |
12 |
11
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) |
13 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
14 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ CRing ) |
16 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
18 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
19 |
18
|
ringmgp |
⊢ ( 𝑍 ∈ Ring → ( mulGrp ‘ 𝑍 ) ∈ Mnd ) |
20 |
17 19
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑍 ) ∈ Mnd ) |
21 |
|
cnring |
⊢ ℂfld ∈ Ring |
22 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
23 |
22
|
ringmgp |
⊢ ( ℂfld ∈ Ring → ( mulGrp ‘ ℂfld ) ∈ Mnd ) |
24 |
21 23
|
ax-mp |
⊢ ( mulGrp ‘ ℂfld ) ∈ Mnd |
25 |
18 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) |
26 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
27 |
22 26
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
28 |
|
eqid |
⊢ ( .r ‘ 𝑍 ) = ( .r ‘ 𝑍 ) |
29 |
18 28
|
mgpplusg |
⊢ ( .r ‘ 𝑍 ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) |
30 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
31 |
22 30
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
32 |
|
eqid |
⊢ ( 1r ‘ 𝑍 ) = ( 1r ‘ 𝑍 ) |
33 |
18 32
|
ringidval |
⊢ ( 1r ‘ 𝑍 ) = ( 0g ‘ ( mulGrp ‘ 𝑍 ) ) |
34 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
35 |
22 34
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ ℂfld ) ) |
36 |
25 27 29 31 33 35
|
ismhm |
⊢ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( ( ( mulGrp ‘ 𝑍 ) ∈ Mnd ∧ ( mulGrp ‘ ℂfld ) ∈ Mnd ) ∧ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ) ) |
37 |
36
|
baib |
⊢ ( ( ( mulGrp ‘ 𝑍 ) ∈ Mnd ∧ ( mulGrp ‘ ℂfld ) ∈ Mnd ) → ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ) ) |
38 |
20 24 37
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) → ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ) ) |
40 |
|
biimt |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
41 |
40
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) → ( 𝑋 ‘ 𝑧 ) = ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ) |
43 |
42
|
neeq1d |
⊢ ( 𝑧 = ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) → ( ( 𝑋 ‘ 𝑧 ) ≠ 0 ↔ ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ≠ 0 ) ) |
44 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) → ( 𝑧 ∈ 𝑈 ↔ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ) ) |
45 |
43 44
|
imbi12d |
⊢ ( 𝑧 = ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) → ( ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ↔ ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ≠ 0 → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ) ) ) |
46 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) |
47 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑍 ∈ Ring ) |
48 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
49 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
50 |
3 28
|
ringcl |
⊢ ( ( 𝑍 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝐵 ) |
51 |
47 48 49 50
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝐵 ) |
52 |
45 46 51
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ≠ 0 → ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ) ) |
53 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑍 ∈ CRing ) |
54 |
4 28 3
|
unitmulclb |
⊢ ( ( 𝑍 ∈ CRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ) |
55 |
53 48 49 54
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ∈ 𝑈 ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ) |
56 |
52 55
|
sylibd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) ≠ 0 → ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ) |
57 |
56
|
necon1bd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ¬ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = 0 ) ) |
58 |
57
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = 0 ) |
59 |
11 46 48
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) |
60 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑋 ‘ 𝑧 ) = ( 𝑋 ‘ 𝑦 ) ) |
61 |
60
|
neeq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑋 ‘ 𝑧 ) ≠ 0 ↔ ( 𝑋 ‘ 𝑦 ) ≠ 0 ) ) |
62 |
|
eleq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑈 ↔ 𝑦 ∈ 𝑈 ) ) |
63 |
61 62
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ↔ ( ( 𝑋 ‘ 𝑦 ) ≠ 0 → 𝑦 ∈ 𝑈 ) ) ) |
64 |
63 46 49
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 ‘ 𝑦 ) ≠ 0 → 𝑦 ∈ 𝑈 ) ) |
65 |
59 64
|
anim12d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ∧ ( 𝑋 ‘ 𝑦 ) ≠ 0 ) → ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ) |
66 |
65
|
con3dimp |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ¬ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ∧ ( 𝑋 ‘ 𝑦 ) ≠ 0 ) ) |
67 |
|
neanior |
⊢ ( ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ∧ ( 𝑋 ‘ 𝑦 ) ≠ 0 ) ↔ ¬ ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑋 ‘ 𝑦 ) = 0 ) ) |
68 |
67
|
con2bii |
⊢ ( ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑋 ‘ 𝑦 ) = 0 ) ↔ ¬ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ∧ ( 𝑋 ‘ 𝑦 ) ≠ 0 ) ) |
69 |
66 68
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑋 ‘ 𝑦 ) = 0 ) ) |
70 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑋 : 𝐵 ⟶ ℂ ) |
71 |
70 48
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
72 |
70 49
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑋 ‘ 𝑦 ) ∈ ℂ ) |
73 |
71 72
|
mul0ord |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) = 0 ↔ ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑋 ‘ 𝑦 ) = 0 ) ) ) |
74 |
73
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) = 0 ↔ ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑋 ‘ 𝑦 ) = 0 ) ) ) |
75 |
69 74
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) = 0 ) |
76 |
58 75
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
77 |
76
|
a1d |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
78 |
76 77
|
2thd |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
79 |
41 78
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
80 |
79
|
pm5.74da |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) ) |
81 |
3 4
|
unitcl |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵 ) |
82 |
3 4
|
unitcl |
⊢ ( 𝑦 ∈ 𝑈 → 𝑦 ∈ 𝐵 ) |
83 |
81 82
|
anim12i |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
84 |
83
|
pm4.71ri |
⊢ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) ) |
85 |
84
|
imbi1i |
⊢ ( ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
86 |
|
impexp |
⊢ ( ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
87 |
85 86
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
88 |
80 87
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ↔ ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
89 |
88
|
2albidv |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
90 |
|
r2al |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
91 |
|
r2al |
⊢ ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
92 |
89 90 91
|
3bitr4g |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
93 |
92
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) ∧ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
94 |
93
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) → ( ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ↔ ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) ) |
95 |
|
3anan32 |
⊢ ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ↔ ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
96 |
|
an31 |
⊢ ( ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ↔ ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
97 |
94 95 96
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) → ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ↔ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ) ) |
98 |
39 97
|
bitrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑧 ∈ 𝐵 ( ( 𝑋 ‘ 𝑧 ) ≠ 0 → 𝑧 ∈ 𝑈 ) ) → ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ) ) |
99 |
12 98
|
sylan2br |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) → ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ) ) |
100 |
99
|
pm5.32da |
⊢ ( 𝜑 → ( ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ∧ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ) ) ) |
101 |
|
ancom |
⊢ ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ) |
102 |
|
df-3an |
⊢ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ↔ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) |
103 |
102
|
anbi2i |
⊢ ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ↔ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ) |
104 |
|
an13 |
⊢ ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ∧ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ) ) |
105 |
103 104
|
bitri |
⊢ ( ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ∧ ( ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ) ∧ 𝑋 : 𝐵 ⟶ ℂ ) ) ) |
106 |
100 101 105
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ↔ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ) ) |
107 |
7 106
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ 𝑈 ) ) ) ) ) |