Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrmhm.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrmhm.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrelbas4.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
5 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
7 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
8 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
9 |
1 2 6 7 8 3
|
dchrelbas2 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑍 ) ( ( 𝑋 ‘ 𝑦 ) ≠ 0 → 𝑦 ∈ ( Unit ‘ 𝑍 ) ) ) ) ) |
10 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
11 |
10
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → 𝑁 ∈ ℕ0 ) |
12 |
2 6 4
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) ) |
13 |
|
fveq2 |
⊢ ( ( 𝐿 ‘ 𝑥 ) = 𝑦 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = ( 𝑋 ‘ 𝑦 ) ) |
14 |
13
|
neeq1d |
⊢ ( ( 𝐿 ‘ 𝑥 ) = 𝑦 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) ≠ 0 ↔ ( 𝑋 ‘ 𝑦 ) ≠ 0 ) ) |
15 |
|
eleq1 |
⊢ ( ( 𝐿 ‘ 𝑥 ) = 𝑦 → ( ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ↔ 𝑦 ∈ ( Unit ‘ 𝑍 ) ) ) |
16 |
14 15
|
imbi12d |
⊢ ( ( 𝐿 ‘ 𝑥 ) = 𝑦 → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) ≠ 0 → ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ) ↔ ( ( 𝑋 ‘ 𝑦 ) ≠ 0 → 𝑦 ∈ ( Unit ‘ 𝑍 ) ) ) ) |
17 |
16
|
cbvfo |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) → ( ∀ 𝑥 ∈ ℤ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) ≠ 0 → ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑍 ) ( ( 𝑋 ‘ 𝑦 ) ≠ 0 → 𝑦 ∈ ( Unit ‘ 𝑍 ) ) ) ) |
18 |
11 12 17
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ∀ 𝑥 ∈ ℤ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) ≠ 0 → ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑍 ) ( ( 𝑋 ‘ 𝑦 ) ≠ 0 → 𝑦 ∈ ( Unit ‘ 𝑍 ) ) ) ) |
19 |
|
df-ne |
⊢ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) ≠ 0 ↔ ¬ ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) |
20 |
19
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) ≠ 0 ↔ ¬ ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) |
21 |
2 7 4
|
znunit |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝑥 gcd 𝑁 ) = 1 ) ) |
22 |
11 21
|
sylan |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝑥 gcd 𝑁 ) = 1 ) ) |
23 |
|
1red |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → 1 ∈ ℝ ) |
24 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
25 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → 𝑁 ∈ ℕ ) |
26 |
25
|
nnzd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
27 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
28 |
|
simpr |
⊢ ( ( 𝑥 = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
29 |
28
|
necon3ai |
⊢ ( 𝑁 ≠ 0 → ¬ ( 𝑥 = 0 ∧ 𝑁 = 0 ) ) |
30 |
25 27 29
|
3syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ¬ ( 𝑥 = 0 ∧ 𝑁 = 0 ) ) |
31 |
|
gcdn0cl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑥 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑥 gcd 𝑁 ) ∈ ℕ ) |
32 |
24 26 30 31
|
syl21anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 gcd 𝑁 ) ∈ ℕ ) |
33 |
32
|
nnred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 gcd 𝑁 ) ∈ ℝ ) |
34 |
32
|
nnge1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → 1 ≤ ( 𝑥 gcd 𝑁 ) ) |
35 |
23 33 34
|
leltned |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ( 1 < ( 𝑥 gcd 𝑁 ) ↔ ( 𝑥 gcd 𝑁 ) ≠ 1 ) ) |
36 |
35
|
necon2bbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 gcd 𝑁 ) = 1 ↔ ¬ 1 < ( 𝑥 gcd 𝑁 ) ) ) |
37 |
22 36
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ↔ ¬ 1 < ( 𝑥 gcd 𝑁 ) ) ) |
38 |
20 37
|
imbi12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) ≠ 0 → ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ) ↔ ( ¬ ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 → ¬ 1 < ( 𝑥 gcd 𝑁 ) ) ) ) |
39 |
|
con34b |
⊢ ( ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ↔ ( ¬ ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 → ¬ 1 < ( 𝑥 gcd 𝑁 ) ) ) |
40 |
38 39
|
bitr4di |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) ∧ 𝑥 ∈ ℤ ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) ≠ 0 → ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ) ↔ ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) ) |
41 |
40
|
ralbidva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ∀ 𝑥 ∈ ℤ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) ≠ 0 → ( 𝐿 ‘ 𝑥 ) ∈ ( Unit ‘ 𝑍 ) ) ↔ ∀ 𝑥 ∈ ℤ ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) ) |
42 |
18 41
|
bitr3d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑍 ) ( ( 𝑋 ‘ 𝑦 ) ≠ 0 → 𝑦 ∈ ( Unit ‘ 𝑍 ) ) ↔ ∀ 𝑥 ∈ ℤ ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) ) |
43 |
42
|
pm5.32da |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑍 ) ( ( 𝑋 ‘ 𝑦 ) ≠ 0 → 𝑦 ∈ ( Unit ‘ 𝑍 ) ) ) ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ℤ ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) ) ) |
44 |
9 43
|
bitrd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ℤ ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) ) ) |
45 |
5 44
|
biadanii |
⊢ ( 𝑋 ∈ 𝐷 ↔ ( 𝑁 ∈ ℕ ∧ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ℤ ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) ) ) |
46 |
|
3anass |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ℤ ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) ↔ ( 𝑁 ∈ ℕ ∧ ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ℤ ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) ) ) |
47 |
45 46
|
bitr4i |
⊢ ( 𝑋 ∈ 𝐷 ↔ ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ ∀ 𝑥 ∈ ℤ ( 1 < ( 𝑥 gcd 𝑁 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑥 ) ) = 0 ) ) ) |