Step |
Hyp |
Ref |
Expression |
1 |
|
dchrmhm.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrmhm.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrmhm.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrf.b |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
5 |
|
dchrf.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
6 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
7 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
1 2 4 6 8 3
|
dchrelbas3 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( ∀ 𝑥 ∈ ( Unit ‘ 𝑍 ) ∀ 𝑦 ∈ ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) ) ) |
10 |
5 9
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 : 𝐵 ⟶ ℂ ∧ ( ∀ 𝑥 ∈ ( Unit ‘ 𝑍 ) ∀ 𝑦 ∈ ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) = 1 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ 𝑍 ) ) ) ) ) |
11 |
10
|
simpld |
⊢ ( 𝜑 → 𝑋 : 𝐵 ⟶ ℂ ) |