Metamath Proof Explorer


Theorem dchrghm

Description: A Dirichlet character restricted to the unit group of Z/nZ is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses dchrghm.g 𝐺 = ( DChr ‘ 𝑁 )
dchrghm.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
dchrghm.b 𝐷 = ( Base ‘ 𝐺 )
dchrghm.u 𝑈 = ( Unit ‘ 𝑍 )
dchrghm.h 𝐻 = ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 )
dchrghm.m 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
dchrghm.x ( 𝜑𝑋𝐷 )
Assertion dchrghm ( 𝜑 → ( 𝑋𝑈 ) ∈ ( 𝐻 GrpHom 𝑀 ) )

Proof

Step Hyp Ref Expression
1 dchrghm.g 𝐺 = ( DChr ‘ 𝑁 )
2 dchrghm.z 𝑍 = ( ℤ/nℤ ‘ 𝑁 )
3 dchrghm.b 𝐷 = ( Base ‘ 𝐺 )
4 dchrghm.u 𝑈 = ( Unit ‘ 𝑍 )
5 dchrghm.h 𝐻 = ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 )
6 dchrghm.m 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) )
7 dchrghm.x ( 𝜑𝑋𝐷 )
8 1 2 3 dchrmhm 𝐷 ⊆ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) )
9 8 7 sselid ( 𝜑𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) )
10 1 3 dchrrcl ( 𝑋𝐷𝑁 ∈ ℕ )
11 7 10 syl ( 𝜑𝑁 ∈ ℕ )
12 11 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
13 2 zncrng ( 𝑁 ∈ ℕ0𝑍 ∈ CRing )
14 12 13 syl ( 𝜑𝑍 ∈ CRing )
15 crngring ( 𝑍 ∈ CRing → 𝑍 ∈ Ring )
16 14 15 syl ( 𝜑𝑍 ∈ Ring )
17 eqid ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 )
18 4 17 unitsubm ( 𝑍 ∈ Ring → 𝑈 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑍 ) ) )
19 16 18 syl ( 𝜑𝑈 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑍 ) ) )
20 5 resmhm ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ 𝑈 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑍 ) ) ) → ( 𝑋𝑈 ) ∈ ( 𝐻 MndHom ( mulGrp ‘ ℂfld ) ) )
21 9 19 20 syl2anc ( 𝜑 → ( 𝑋𝑈 ) ∈ ( 𝐻 MndHom ( mulGrp ‘ ℂfld ) ) )
22 cnring fld ∈ Ring
23 cnfldbas ℂ = ( Base ‘ ℂfld )
24 cnfld0 0 = ( 0g ‘ ℂfld )
25 cndrng fld ∈ DivRing
26 23 24 25 drngui ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld )
27 eqid ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld )
28 26 27 unitsubm ( ℂfld ∈ Ring → ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) )
29 22 28 ax-mp ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) )
30 df-ima ( 𝑋𝑈 ) = ran ( 𝑋𝑈 )
31 eqid ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 )
32 1 2 3 31 7 dchrf ( 𝜑𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ )
33 31 4 unitss 𝑈 ⊆ ( Base ‘ 𝑍 )
34 33 sseli ( 𝑥𝑈𝑥 ∈ ( Base ‘ 𝑍 ) )
35 ffvelrn ( ( 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑋𝑥 ) ∈ ℂ )
36 32 34 35 syl2an ( ( 𝜑𝑥𝑈 ) → ( 𝑋𝑥 ) ∈ ℂ )
37 simpr ( ( 𝜑𝑥𝑈 ) → 𝑥𝑈 )
38 7 adantr ( ( 𝜑𝑥𝑈 ) → 𝑋𝐷 )
39 34 adantl ( ( 𝜑𝑥𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑍 ) )
40 1 2 3 31 4 38 39 dchrn0 ( ( 𝜑𝑥𝑈 ) → ( ( 𝑋𝑥 ) ≠ 0 ↔ 𝑥𝑈 ) )
41 37 40 mpbird ( ( 𝜑𝑥𝑈 ) → ( 𝑋𝑥 ) ≠ 0 )
42 eldifsn ( ( 𝑋𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋𝑥 ) ∈ ℂ ∧ ( 𝑋𝑥 ) ≠ 0 ) )
43 36 41 42 sylanbrc ( ( 𝜑𝑥𝑈 ) → ( 𝑋𝑥 ) ∈ ( ℂ ∖ { 0 } ) )
44 43 ralrimiva ( 𝜑 → ∀ 𝑥𝑈 ( 𝑋𝑥 ) ∈ ( ℂ ∖ { 0 } ) )
45 32 ffund ( 𝜑 → Fun 𝑋 )
46 32 fdmd ( 𝜑 → dom 𝑋 = ( Base ‘ 𝑍 ) )
47 33 46 sseqtrrid ( 𝜑𝑈 ⊆ dom 𝑋 )
48 funimass4 ( ( Fun 𝑋𝑈 ⊆ dom 𝑋 ) → ( ( 𝑋𝑈 ) ⊆ ( ℂ ∖ { 0 } ) ↔ ∀ 𝑥𝑈 ( 𝑋𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) )
49 45 47 48 syl2anc ( 𝜑 → ( ( 𝑋𝑈 ) ⊆ ( ℂ ∖ { 0 } ) ↔ ∀ 𝑥𝑈 ( 𝑋𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) )
50 44 49 mpbird ( 𝜑 → ( 𝑋𝑈 ) ⊆ ( ℂ ∖ { 0 } ) )
51 30 50 eqsstrrid ( 𝜑 → ran ( 𝑋𝑈 ) ⊆ ( ℂ ∖ { 0 } ) )
52 6 resmhm2b ( ( ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ ran ( 𝑋𝑈 ) ⊆ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋𝑈 ) ∈ ( 𝐻 MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( 𝑋𝑈 ) ∈ ( 𝐻 MndHom 𝑀 ) ) )
53 29 51 52 sylancr ( 𝜑 → ( ( 𝑋𝑈 ) ∈ ( 𝐻 MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( 𝑋𝑈 ) ∈ ( 𝐻 MndHom 𝑀 ) ) )
54 21 53 mpbid ( 𝜑 → ( 𝑋𝑈 ) ∈ ( 𝐻 MndHom 𝑀 ) )
55 4 5 unitgrp ( 𝑍 ∈ Ring → 𝐻 ∈ Grp )
56 16 55 syl ( 𝜑𝐻 ∈ Grp )
57 6 cnmgpabl 𝑀 ∈ Abel
58 ablgrp ( 𝑀 ∈ Abel → 𝑀 ∈ Grp )
59 57 58 ax-mp 𝑀 ∈ Grp
60 ghmmhmb ( ( 𝐻 ∈ Grp ∧ 𝑀 ∈ Grp ) → ( 𝐻 GrpHom 𝑀 ) = ( 𝐻 MndHom 𝑀 ) )
61 56 59 60 sylancl ( 𝜑 → ( 𝐻 GrpHom 𝑀 ) = ( 𝐻 MndHom 𝑀 ) )
62 54 61 eleqtrrd ( 𝜑 → ( 𝑋𝑈 ) ∈ ( 𝐻 GrpHom 𝑀 ) )