Step |
Hyp |
Ref |
Expression |
1 |
|
dchrghm.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrghm.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
dchrghm.b |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
4 |
|
dchrghm.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
5 |
|
dchrghm.h |
⊢ 𝐻 = ( ( mulGrp ‘ 𝑍 ) ↾s 𝑈 ) |
6 |
|
dchrghm.m |
⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
7 |
|
dchrghm.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
8 |
1 2 3
|
dchrmhm |
⊢ 𝐷 ⊆ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) |
9 |
8 7
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
10 |
1 3
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
12 |
11
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
13 |
2
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ CRing ) |
15 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
17 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
18 |
4 17
|
unitsubm |
⊢ ( 𝑍 ∈ Ring → 𝑈 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑍 ) ) ) |
19 |
16 18
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑍 ) ) ) |
20 |
5
|
resmhm |
⊢ ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ 𝑈 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑍 ) ) ) → ( 𝑋 ↾ 𝑈 ) ∈ ( 𝐻 MndHom ( mulGrp ‘ ℂfld ) ) ) |
21 |
9 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝑈 ) ∈ ( 𝐻 MndHom ( mulGrp ‘ ℂfld ) ) ) |
22 |
|
cnring |
⊢ ℂfld ∈ Ring |
23 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
24 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
25 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
26 |
23 24 25
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
27 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
28 |
26 27
|
unitsubm |
⊢ ( ℂfld ∈ Ring → ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
29 |
22 28
|
ax-mp |
⊢ ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) |
30 |
|
df-ima |
⊢ ( 𝑋 “ 𝑈 ) = ran ( 𝑋 ↾ 𝑈 ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
32 |
1 2 3 31 7
|
dchrf |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ) |
33 |
31 4
|
unitss |
⊢ 𝑈 ⊆ ( Base ‘ 𝑍 ) |
34 |
33
|
sseli |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( Base ‘ 𝑍 ) ) |
35 |
|
ffvelrn |
⊢ ( ( 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℂ ∧ 𝑥 ∈ ( Base ‘ 𝑍 ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
36 |
32 34 35
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
38 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑋 ∈ 𝐷 ) |
39 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( Base ‘ 𝑍 ) ) |
40 |
1 2 3 31 4 38 39
|
dchrn0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑋 ‘ 𝑥 ) ≠ 0 ↔ 𝑥 ∈ 𝑈 ) ) |
41 |
37 40
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑥 ) ≠ 0 ) |
42 |
|
eldifsn |
⊢ ( ( 𝑋 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑋 ‘ 𝑥 ) ∈ ℂ ∧ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) |
43 |
36 41 42
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑈 ) → ( 𝑋 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
44 |
43
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ( 𝑋 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
45 |
32
|
ffund |
⊢ ( 𝜑 → Fun 𝑋 ) |
46 |
32
|
fdmd |
⊢ ( 𝜑 → dom 𝑋 = ( Base ‘ 𝑍 ) ) |
47 |
33 46
|
sseqtrrid |
⊢ ( 𝜑 → 𝑈 ⊆ dom 𝑋 ) |
48 |
|
funimass4 |
⊢ ( ( Fun 𝑋 ∧ 𝑈 ⊆ dom 𝑋 ) → ( ( 𝑋 “ 𝑈 ) ⊆ ( ℂ ∖ { 0 } ) ↔ ∀ 𝑥 ∈ 𝑈 ( 𝑋 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
49 |
45 47 48
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 “ 𝑈 ) ⊆ ( ℂ ∖ { 0 } ) ↔ ∀ 𝑥 ∈ 𝑈 ( 𝑋 ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
50 |
44 49
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 “ 𝑈 ) ⊆ ( ℂ ∖ { 0 } ) ) |
51 |
30 50
|
eqsstrrid |
⊢ ( 𝜑 → ran ( 𝑋 ↾ 𝑈 ) ⊆ ( ℂ ∖ { 0 } ) ) |
52 |
6
|
resmhm2b |
⊢ ( ( ( ℂ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ ran ( 𝑋 ↾ 𝑈 ) ⊆ ( ℂ ∖ { 0 } ) ) → ( ( 𝑋 ↾ 𝑈 ) ∈ ( 𝐻 MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( 𝑋 ↾ 𝑈 ) ∈ ( 𝐻 MndHom 𝑀 ) ) ) |
53 |
29 51 52
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑋 ↾ 𝑈 ) ∈ ( 𝐻 MndHom ( mulGrp ‘ ℂfld ) ) ↔ ( 𝑋 ↾ 𝑈 ) ∈ ( 𝐻 MndHom 𝑀 ) ) ) |
54 |
21 53
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝑈 ) ∈ ( 𝐻 MndHom 𝑀 ) ) |
55 |
4 5
|
unitgrp |
⊢ ( 𝑍 ∈ Ring → 𝐻 ∈ Grp ) |
56 |
16 55
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Grp ) |
57 |
6
|
cnmgpabl |
⊢ 𝑀 ∈ Abel |
58 |
|
ablgrp |
⊢ ( 𝑀 ∈ Abel → 𝑀 ∈ Grp ) |
59 |
57 58
|
ax-mp |
⊢ 𝑀 ∈ Grp |
60 |
|
ghmmhmb |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑀 ∈ Grp ) → ( 𝐻 GrpHom 𝑀 ) = ( 𝐻 MndHom 𝑀 ) ) |
61 |
56 59 60
|
sylancl |
⊢ ( 𝜑 → ( 𝐻 GrpHom 𝑀 ) = ( 𝐻 MndHom 𝑀 ) ) |
62 |
54 61
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑋 ↾ 𝑈 ) ∈ ( 𝐻 GrpHom 𝑀 ) ) |