Step |
Hyp |
Ref |
Expression |
1 |
|
dchrabs.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
2 |
|
dchrabs.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
3 |
|
dchrabs.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
4 |
|
dchrinv.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( ℤ/nℤ ‘ 𝑁 ) = ( ℤ/nℤ ‘ 𝑁 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
8 |
|
eqid |
⊢ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
9 |
1 5 2 8 3
|
dchrf |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
10 |
|
fco |
⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) → ( ∗ ∘ 𝑋 ) : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
11 |
7 9 10
|
sylancr |
⊢ ( 𝜑 → ( ∗ ∘ 𝑋 ) : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
12 |
|
eqid |
⊢ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
13 |
1 2
|
dchrrcl |
⊢ ( 𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
15 |
1 5 8 12 14 2
|
dchrelbas3 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐷 ↔ ( 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ∧ ( ∀ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∀ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = 1 ∧ ∀ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) ) ) |
16 |
3 15
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ∧ ( ∀ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∀ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = 1 ∧ ∀ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) ) |
17 |
16
|
simprd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∀ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ∧ ( 𝑋 ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = 1 ∧ ∀ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) |
18 |
17
|
simp1d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∀ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
19 |
18
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ∀ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
20 |
19
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
21 |
20
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) |
22 |
21
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ∗ ‘ ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) ) = ( ∗ ‘ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) ) |
23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
24 |
8 12
|
unitss |
⊢ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⊆ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
25 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
26 |
24 25
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
27 |
23 26
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
28 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
29 |
24 28
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → 𝑦 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
30 |
23 29
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( 𝑋 ‘ 𝑦 ) ∈ ℂ ) |
31 |
27 30
|
cjmuld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ∗ ‘ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑋 ‘ 𝑦 ) ) ) = ( ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) · ( ∗ ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
32 |
22 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ∗ ‘ ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) ) = ( ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) · ( ∗ ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
33 |
14
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
34 |
5
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤ/nℤ ‘ 𝑁 ) ∈ CRing ) |
35 |
|
crngring |
⊢ ( ( ℤ/nℤ ‘ 𝑁 ) ∈ CRing → ( ℤ/nℤ ‘ 𝑁 ) ∈ Ring ) |
36 |
33 34 35
|
3syl |
⊢ ( 𝜑 → ( ℤ/nℤ ‘ 𝑁 ) ∈ Ring ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ℤ/nℤ ‘ 𝑁 ) ∈ Ring ) |
38 |
|
eqid |
⊢ ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
39 |
8 38
|
ringcl |
⊢ ( ( ( ℤ/nℤ ‘ 𝑁 ) ∈ Ring ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
40 |
37 26 29 39
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
41 |
|
fvco3 |
⊢ ( ( 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ∧ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ∗ ‘ ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) ) ) |
42 |
23 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ∗ ‘ ( 𝑋 ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) ) ) |
43 |
|
fvco3 |
⊢ ( ( 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) = ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
44 |
23 26 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) = ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
45 |
|
fvco3 |
⊢ ( ( 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ∧ 𝑦 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ 𝑦 ) = ( ∗ ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
46 |
23 29 45
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ 𝑦 ) = ( ∗ ‘ ( 𝑋 ‘ 𝑦 ) ) ) |
47 |
44 46
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) · ( ( ∗ ∘ 𝑋 ) ‘ 𝑦 ) ) = ( ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) · ( ∗ ‘ ( 𝑋 ‘ 𝑦 ) ) ) ) |
48 |
32 42 47
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) · ( ( ∗ ∘ 𝑋 ) ‘ 𝑦 ) ) ) |
49 |
48
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∀ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( ∗ ∘ 𝑋 ) ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) · ( ( ∗ ∘ 𝑋 ) ‘ 𝑦 ) ) ) |
50 |
|
eqid |
⊢ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) = ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) |
51 |
8 50
|
ringidcl |
⊢ ( ( ℤ/nℤ ‘ 𝑁 ) ∈ Ring → ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
52 |
36 51
|
syl |
⊢ ( 𝜑 → ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
53 |
|
fvco3 |
⊢ ( ( 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ∧ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( ∗ ‘ ( 𝑋 ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) |
54 |
9 52 53
|
syl2anc |
⊢ ( 𝜑 → ( ( ∗ ∘ 𝑋 ) ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = ( ∗ ‘ ( 𝑋 ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) |
55 |
17
|
simp2d |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = 1 ) |
56 |
55
|
fveq2d |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) = ( ∗ ‘ 1 ) ) |
57 |
|
1re |
⊢ 1 ∈ ℝ |
58 |
|
cjre |
⊢ ( 1 ∈ ℝ → ( ∗ ‘ 1 ) = 1 ) |
59 |
57 58
|
ax-mp |
⊢ ( ∗ ‘ 1 ) = 1 |
60 |
56 59
|
eqtrdi |
⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) = 1 ) |
61 |
54 60
|
eqtrd |
⊢ ( 𝜑 → ( ( ∗ ∘ 𝑋 ) ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = 1 ) |
62 |
17
|
simp3d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
63 |
9 43
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) = ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
64 |
|
cj0 |
⊢ ( ∗ ‘ 0 ) = 0 |
65 |
64
|
eqcomi |
⊢ 0 = ( ∗ ‘ 0 ) |
66 |
65
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → 0 = ( ∗ ‘ 0 ) ) |
67 |
63 66
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) = 0 ↔ ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) = ( ∗ ‘ 0 ) ) ) |
68 |
9
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
69 |
|
0cn |
⊢ 0 ∈ ℂ |
70 |
|
cj11 |
⊢ ( ( ( 𝑋 ‘ 𝑥 ) ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) = ( ∗ ‘ 0 ) ↔ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
71 |
68 69 70
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) = ( ∗ ‘ 0 ) ↔ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
72 |
67 71
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) = 0 ↔ ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
73 |
72
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ≠ 0 ↔ ( 𝑋 ‘ 𝑥 ) ≠ 0 ) ) |
74 |
73
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↔ ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) |
75 |
74
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( 𝑋 ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) |
76 |
62 75
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) |
77 |
49 61 76
|
3jca |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∀ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( ∗ ∘ 𝑋 ) ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) · ( ( ∗ ∘ 𝑋 ) ‘ 𝑦 ) ) ∧ ( ( ∗ ∘ 𝑋 ) ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = 1 ∧ ∀ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) |
78 |
1 5 8 12 14 2
|
dchrelbas3 |
⊢ ( 𝜑 → ( ( ∗ ∘ 𝑋 ) ∈ 𝐷 ↔ ( ( ∗ ∘ 𝑋 ) : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ∧ ( ∀ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∀ 𝑦 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( ∗ ∘ 𝑋 ) ‘ ( 𝑥 ( .r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) 𝑦 ) ) = ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) · ( ( ∗ ∘ 𝑋 ) ‘ 𝑦 ) ) ∧ ( ( ∗ ∘ 𝑋 ) ‘ ( 1r ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) = 1 ∧ ∀ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ≠ 0 → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) ) ) ) |
79 |
11 77 78
|
mpbir2and |
⊢ ( 𝜑 → ( ∗ ∘ 𝑋 ) ∈ 𝐷 ) |
80 |
1 5 2 6 3 79
|
dchrmul |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) = ( 𝑋 ∘f · ( ∗ ∘ 𝑋 ) ) ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) = ( 𝑋 ∘f · ( ∗ ∘ 𝑋 ) ) ) |
82 |
81
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) ‘ 𝑥 ) = ( ( 𝑋 ∘f · ( ∗ ∘ 𝑋 ) ) ‘ 𝑥 ) ) |
83 |
24
|
sseli |
⊢ ( 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) → 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
84 |
83 63
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) = ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) ) |
85 |
84
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( 𝑋 ‘ 𝑥 ) · ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ) = ( ( 𝑋 ‘ 𝑥 ) · ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
86 |
83 68
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( 𝑋 ‘ 𝑥 ) ∈ ℂ ) |
87 |
86
|
absvalsqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( abs ‘ ( 𝑋 ‘ 𝑥 ) ) ↑ 2 ) = ( ( 𝑋 ‘ 𝑥 ) · ( ∗ ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
88 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → 𝑋 ∈ 𝐷 ) |
89 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
90 |
1 2 88 5 12 89
|
dchrabs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( abs ‘ ( 𝑋 ‘ 𝑥 ) ) = 1 ) |
91 |
90
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( abs ‘ ( 𝑋 ‘ 𝑥 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
92 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
93 |
91 92
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( abs ‘ ( 𝑋 ‘ 𝑥 ) ) ↑ 2 ) = 1 ) |
94 |
85 87 93
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( 𝑋 ‘ 𝑥 ) · ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ) = 1 ) |
95 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → 𝑋 : ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ⟶ ℂ ) |
96 |
95
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → 𝑋 Fn ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
97 |
11
|
ffnd |
⊢ ( 𝜑 → ( ∗ ∘ 𝑋 ) Fn ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ∗ ∘ 𝑋 ) Fn ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
99 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ V ) |
100 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) |
101 |
|
fnfvof |
⊢ ( ( ( 𝑋 Fn ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∧ ( ∗ ∘ 𝑋 ) Fn ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ∧ ( ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ∈ V ∧ 𝑥 ∈ ( Base ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) ) → ( ( 𝑋 ∘f · ( ∗ ∘ 𝑋 ) ) ‘ 𝑥 ) = ( ( 𝑋 ‘ 𝑥 ) · ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ) ) |
102 |
96 98 99 100 101
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( 𝑋 ∘f · ( ∗ ∘ 𝑋 ) ) ‘ 𝑥 ) = ( ( 𝑋 ‘ 𝑥 ) · ( ( ∗ ∘ 𝑋 ) ‘ 𝑥 ) ) ) |
103 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
104 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
105 |
1 5 103 12 104 89
|
dchr1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( 0g ‘ 𝐺 ) ‘ 𝑥 ) = 1 ) |
106 |
94 102 105
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( 𝑋 ∘f · ( ∗ ∘ 𝑋 ) ) ‘ 𝑥 ) = ( ( 0g ‘ 𝐺 ) ‘ 𝑥 ) ) |
107 |
82 106
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) ‘ 𝑥 ) = ( ( 0g ‘ 𝐺 ) ‘ 𝑥 ) ) |
108 |
107
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) ‘ 𝑥 ) = ( ( 0g ‘ 𝐺 ) ‘ 𝑥 ) ) |
109 |
1 5 2 6 3 79
|
dchrmulcl |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) ∈ 𝐷 ) |
110 |
1
|
dchrabl |
⊢ ( 𝑁 ∈ ℕ → 𝐺 ∈ Abel ) |
111 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
112 |
14 110 111
|
3syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
113 |
2 103
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐷 ) |
114 |
112 113
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐷 ) |
115 |
1 5 2 12 109 114
|
dchreq |
⊢ ( 𝜑 → ( ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( Unit ‘ ( ℤ/nℤ ‘ 𝑁 ) ) ( ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) ‘ 𝑥 ) = ( ( 0g ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
116 |
108 115
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
117 |
2 6 103 4
|
grpinvid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ ( ∗ ∘ 𝑋 ) ∈ 𝐷 ) → ( ( 𝐼 ‘ 𝑋 ) = ( ∗ ∘ 𝑋 ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) ) |
118 |
112 3 79 117
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) = ( ∗ ∘ 𝑋 ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( ∗ ∘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) ) |
119 |
116 118
|
mpbird |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) = ( ∗ ∘ 𝑋 ) ) |