| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum2.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum2.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum2.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum0f.f |
⊢ 𝐹 = ( 𝑏 ∈ ℕ ↦ Σ 𝑣 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑣 ) ) ) |
| 8 |
|
dchrisum0f.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 9 |
|
dchrisum0flb.r |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℝ ) |
| 10 |
|
dchrisum0flb.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 11 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( √ ‘ 𝑦 ) = ( √ ‘ 𝐴 ) ) |
| 12 |
11
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ( √ ‘ 𝑦 ) ∈ ℕ ↔ ( √ ‘ 𝐴 ) ∈ ℕ ) ) |
| 13 |
12
|
ifbid |
⊢ ( 𝑦 = 𝐴 → if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) = if ( ( √ ‘ 𝐴 ) ∈ ℕ , 1 , 0 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 15 |
13 14
|
breq12d |
⊢ ( 𝑦 = 𝐴 → ( if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ if ( ( √ ‘ 𝐴 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝐴 ) ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 1 ... 𝑘 ) = ( 1 ... 1 ) ) |
| 17 |
16
|
raleqdv |
⊢ ( 𝑘 = 1 → ( ∀ 𝑦 ∈ ( 1 ... 𝑘 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 1 ... 1 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑘 = 1 → ( ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 𝑘 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 1 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑘 = 𝑖 → ( 1 ... 𝑘 ) = ( 1 ... 𝑖 ) ) |
| 20 |
19
|
raleqdv |
⊢ ( 𝑘 = 𝑖 → ( ∀ 𝑦 ∈ ( 1 ... 𝑘 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑘 = 𝑖 → ( ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 𝑘 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( 1 ... 𝑘 ) = ( 1 ... ( 𝑖 + 1 ) ) ) |
| 23 |
22
|
raleqdv |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ∀ 𝑦 ∈ ( 1 ... 𝑘 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 1 ... ( 𝑖 + 1 ) ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑘 = ( 𝑖 + 1 ) → ( ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 𝑘 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... ( 𝑖 + 1 ) ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑘 = 𝐴 → ( 1 ... 𝑘 ) = ( 1 ... 𝐴 ) ) |
| 26 |
25
|
raleqdv |
⊢ ( 𝑘 = 𝐴 → ( ∀ 𝑦 ∈ ( 1 ... 𝑘 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 1 ... 𝐴 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑘 = 𝐴 → ( ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 𝑘 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 𝐴 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 28 |
|
2prm |
⊢ 2 ∈ ℙ |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℙ ) |
| 30 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 32 |
1 2 3 4 5 6 7 8 9 29 31
|
dchrisum0flblem1 |
⊢ ( 𝜑 → if ( ( √ ‘ ( 2 ↑ 0 ) ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ ( 2 ↑ 0 ) ) ) |
| 33 |
|
elfz1eq |
⊢ ( 𝑦 ∈ ( 1 ... 1 ) → 𝑦 = 1 ) |
| 34 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 35 |
34
|
numexp0 |
⊢ ( 2 ↑ 0 ) = 1 |
| 36 |
33 35
|
eqtr4di |
⊢ ( 𝑦 ∈ ( 1 ... 1 ) → 𝑦 = ( 2 ↑ 0 ) ) |
| 37 |
36
|
fveq2d |
⊢ ( 𝑦 ∈ ( 1 ... 1 ) → ( √ ‘ 𝑦 ) = ( √ ‘ ( 2 ↑ 0 ) ) ) |
| 38 |
37
|
eleq1d |
⊢ ( 𝑦 ∈ ( 1 ... 1 ) → ( ( √ ‘ 𝑦 ) ∈ ℕ ↔ ( √ ‘ ( 2 ↑ 0 ) ) ∈ ℕ ) ) |
| 39 |
38
|
ifbid |
⊢ ( 𝑦 ∈ ( 1 ... 1 ) → if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) = if ( ( √ ‘ ( 2 ↑ 0 ) ) ∈ ℕ , 1 , 0 ) ) |
| 40 |
36
|
fveq2d |
⊢ ( 𝑦 ∈ ( 1 ... 1 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 2 ↑ 0 ) ) ) |
| 41 |
39 40
|
breq12d |
⊢ ( 𝑦 ∈ ( 1 ... 1 ) → ( if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ if ( ( √ ‘ ( 2 ↑ 0 ) ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ ( 2 ↑ 0 ) ) ) ) |
| 42 |
41
|
biimprcd |
⊢ ( if ( ( √ ‘ ( 2 ↑ 0 ) ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ ( 2 ↑ 0 ) ) → ( 𝑦 ∈ ( 1 ... 1 ) → if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 43 |
42
|
ralrimiv |
⊢ ( if ( ( √ ‘ ( 2 ↑ 0 ) ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ ( 2 ↑ 0 ) ) → ∀ 𝑦 ∈ ( 1 ... 1 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 44 |
32 43
|
syl |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 1 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 45 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ℕ ) |
| 46 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 47 |
45 46
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
| 48 |
47
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → 𝑖 ∈ ( ℤ≥ ‘ 1 ) ) |
| 49 |
|
eluzp1p1 |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 50 |
48 49
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 51 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 52 |
51
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 53 |
50 52
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 54 |
|
exprmfct |
⊢ ( ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑖 + 1 ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( 𝑖 + 1 ) ) |
| 56 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → 𝑁 ∈ ℕ ) |
| 57 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → 𝑋 ∈ 𝐷 ) |
| 58 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℝ ) |
| 59 |
53
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 60 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → 𝑝 ∈ ℙ ) |
| 61 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → 𝑝 ∥ ( 𝑖 + 1 ) ) |
| 62 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 63 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → 𝑖 ∈ ℕ ) |
| 64 |
63
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → 𝑖 ∈ ℤ ) |
| 65 |
|
fzval3 |
⊢ ( 𝑖 ∈ ℤ → ( 1 ... 𝑖 ) = ( 1 ..^ ( 𝑖 + 1 ) ) ) |
| 66 |
64 65
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → ( 1 ... 𝑖 ) = ( 1 ..^ ( 𝑖 + 1 ) ) ) |
| 67 |
62 66
|
raleqtrdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → ∀ 𝑦 ∈ ( 1 ..^ ( 𝑖 + 1 ) ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 68 |
1 2 56 4 5 6 7 57 58 59 60 61 67
|
dchrisum0flblem2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑖 + 1 ) ) ) → if ( ( √ ‘ ( 𝑖 + 1 ) ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) |
| 69 |
55 68
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → if ( ( √ ‘ ( 𝑖 + 1 ) ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) |
| 70 |
|
ovex |
⊢ ( 𝑖 + 1 ) ∈ V |
| 71 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑖 + 1 ) → ( √ ‘ 𝑦 ) = ( √ ‘ ( 𝑖 + 1 ) ) ) |
| 72 |
71
|
eleq1d |
⊢ ( 𝑦 = ( 𝑖 + 1 ) → ( ( √ ‘ 𝑦 ) ∈ ℕ ↔ ( √ ‘ ( 𝑖 + 1 ) ) ∈ ℕ ) ) |
| 73 |
72
|
ifbid |
⊢ ( 𝑦 = ( 𝑖 + 1 ) → if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) = if ( ( √ ‘ ( 𝑖 + 1 ) ) ∈ ℕ , 1 , 0 ) ) |
| 74 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑖 + 1 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) |
| 75 |
73 74
|
breq12d |
⊢ ( 𝑦 = ( 𝑖 + 1 ) → ( if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ if ( ( √ ‘ ( 𝑖 + 1 ) ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) ) |
| 76 |
70 75
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { ( 𝑖 + 1 ) } if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ if ( ( √ ‘ ( 𝑖 + 1 ) ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ ( 𝑖 + 1 ) ) ) |
| 77 |
69 76
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ { ( 𝑖 + 1 ) } if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 78 |
77
|
expr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑦 ∈ { ( 𝑖 + 1 ) } if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 79 |
78
|
ancld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) → ( ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { ( 𝑖 + 1 ) } if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 80 |
|
fzsuc |
⊢ ( 𝑖 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑖 + 1 ) ) = ( ( 1 ... 𝑖 ) ∪ { ( 𝑖 + 1 ) } ) ) |
| 81 |
47 80
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 1 ... ( 𝑖 + 1 ) ) = ( ( 1 ... 𝑖 ) ∪ { ( 𝑖 + 1 ) } ) ) |
| 82 |
81
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑖 + 1 ) ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( ( 1 ... 𝑖 ) ∪ { ( 𝑖 + 1 ) } ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 83 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( ( 1 ... 𝑖 ) ∪ { ( 𝑖 + 1 ) } ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { ( 𝑖 + 1 ) } if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 84 |
82 83
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ∀ 𝑦 ∈ ( 1 ... ( 𝑖 + 1 ) ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { ( 𝑖 + 1 ) } if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 85 |
79 84
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 1 ... ( 𝑖 + 1 ) ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 86 |
85
|
expcom |
⊢ ( 𝑖 ∈ ℕ → ( 𝜑 → ( ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) → ∀ 𝑦 ∈ ( 1 ... ( 𝑖 + 1 ) ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 87 |
86
|
a2d |
⊢ ( 𝑖 ∈ ℕ → ( ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 𝑖 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... ( 𝑖 + 1 ) ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 88 |
18 21 24 27 44 87
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 𝐴 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 89 |
10 88
|
mpcom |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... 𝐴 ) if ( ( √ ‘ 𝑦 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 90 |
10 46
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) |
| 91 |
|
eluzfz2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 1 ) → 𝐴 ∈ ( 1 ... 𝐴 ) ) |
| 92 |
90 91
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( 1 ... 𝐴 ) ) |
| 93 |
15 89 92
|
rspcdva |
⊢ ( 𝜑 → if ( ( √ ‘ 𝐴 ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ 𝐴 ) ) |