| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum2.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum2.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum2.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum0f.f |
⊢ 𝐹 = ( 𝑏 ∈ ℕ ↦ Σ 𝑣 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑣 ) ) ) |
| 8 |
|
dchrisum0f.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 9 |
|
dchrisum0flb.r |
⊢ ( 𝜑 → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℝ ) |
| 10 |
|
dchrisum0flblem1.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
| 11 |
|
dchrisum0flblem1.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 12 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → 1 ∈ ℝ ) |
| 13 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) ∧ ¬ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → 0 ∈ ℝ ) |
| 14 |
12 13
|
ifclda |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ∈ ℝ ) |
| 15 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → 1 ∈ ℝ ) |
| 16 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ∈ Fin ) |
| 17 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 19 |
1 18 2
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) ) |
| 20 |
|
fof |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
| 21 |
17 19 20
|
3syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
| 22 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 23 |
10 22
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
| 24 |
21 23
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝑃 ) ∈ ( Base ‘ 𝑍 ) ) |
| 25 |
9 24
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℝ ) |
| 26 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝐴 ) → 𝑖 ∈ ℕ0 ) |
| 27 |
|
reexpcl |
⊢ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℝ ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ∈ ℝ ) |
| 28 |
25 26 27
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ∈ ℝ ) |
| 29 |
16 28
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ∈ ℝ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ∈ ℝ ) |
| 31 |
|
breq1 |
⊢ ( 1 = if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) → ( 1 ≤ 1 ↔ if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ 1 ) ) |
| 32 |
|
breq1 |
⊢ ( 0 = if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) → ( 0 ≤ 1 ↔ if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ 1 ) ) |
| 33 |
|
1le1 |
⊢ 1 ≤ 1 |
| 34 |
|
0le1 |
⊢ 0 ≤ 1 |
| 35 |
31 32 33 34
|
keephyp |
⊢ if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ 1 |
| 36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ 1 ) |
| 37 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 38 |
11 37
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 39 |
|
fzn0 |
⊢ ( ( 0 ... 𝐴 ) ≠ ∅ ↔ 𝐴 ∈ ( ℤ≥ ‘ 0 ) ) |
| 40 |
38 39
|
sylibr |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) ≠ ∅ ) |
| 41 |
|
hashnncl |
⊢ ( ( 0 ... 𝐴 ) ∈ Fin → ( ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℕ ↔ ( 0 ... 𝐴 ) ≠ ∅ ) ) |
| 42 |
16 41
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℕ ↔ ( 0 ... 𝐴 ) ≠ ∅ ) ) |
| 43 |
40 42
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℕ ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℕ ) |
| 45 |
44
|
nnge1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → 1 ≤ ( ♯ ‘ ( 0 ... 𝐴 ) ) ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) |
| 47 |
46
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) = ( 1 ↑ 𝑖 ) ) |
| 48 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 0 ... 𝐴 ) → 𝑖 ∈ ℤ ) |
| 49 |
|
1exp |
⊢ ( 𝑖 ∈ ℤ → ( 1 ↑ 𝑖 ) = 1 ) |
| 50 |
48 49
|
syl |
⊢ ( 𝑖 ∈ ( 0 ... 𝐴 ) → ( 1 ↑ 𝑖 ) = 1 ) |
| 51 |
47 50
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) = 1 ) |
| 52 |
51
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) = Σ 𝑖 ∈ ( 0 ... 𝐴 ) 1 ) |
| 53 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → ( 0 ... 𝐴 ) ∈ Fin ) |
| 54 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 55 |
|
fsumconst |
⊢ ( ( ( 0 ... 𝐴 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑖 ∈ ( 0 ... 𝐴 ) 1 = ( ( ♯ ‘ ( 0 ... 𝐴 ) ) · 1 ) ) |
| 56 |
53 54 55
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → Σ 𝑖 ∈ ( 0 ... 𝐴 ) 1 = ( ( ♯ ‘ ( 0 ... 𝐴 ) ) · 1 ) ) |
| 57 |
44
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → ( ♯ ‘ ( 0 ... 𝐴 ) ) ∈ ℂ ) |
| 58 |
57
|
mulridd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → ( ( ♯ ‘ ( 0 ... 𝐴 ) ) · 1 ) = ( ♯ ‘ ( 0 ... 𝐴 ) ) ) |
| 59 |
52 56 58
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) = ( ♯ ‘ ( 0 ... 𝐴 ) ) ) |
| 60 |
45 59
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → 1 ≤ Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 61 |
14 15 30 36 60
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) → if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 62 |
|
oveq1 |
⊢ ( 1 = if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) → ( 1 · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) = ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) |
| 63 |
62
|
breq1d |
⊢ ( 1 = if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) → ( ( 1 · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ↔ ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ) ) |
| 64 |
|
oveq1 |
⊢ ( 0 = if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) → ( 0 · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) = ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) |
| 65 |
64
|
breq1d |
⊢ ( 0 = if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) → ( ( 0 · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ↔ ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ) ) |
| 66 |
|
1re |
⊢ 1 ∈ ℝ |
| 67 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℝ ) |
| 68 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℝ ) → ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ∈ ℝ ) |
| 69 |
66 67 68
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ∈ ℝ ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ∈ ℝ ) |
| 71 |
70
|
leidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ≤ ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 72 |
69
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ∈ ℂ ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ∈ ℂ ) |
| 74 |
73
|
mullidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 1 · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) = ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 75 |
|
nn0p1nn |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℕ ) |
| 76 |
11 75
|
syl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℕ ) |
| 77 |
76
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 0 ) → ( 𝐴 + 1 ) ∈ ℕ ) |
| 78 |
77
|
0expd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 0 ) → ( 0 ↑ ( 𝐴 + 1 ) ) = 0 ) |
| 79 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 0 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 0 ) |
| 80 |
79
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 0 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) = ( 0 ↑ ( 𝐴 + 1 ) ) ) |
| 81 |
78 80 79
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 0 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) |
| 82 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 83 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → 𝐴 ∈ ℕ0 ) |
| 84 |
|
expp1 |
⊢ ( ( - 1 ∈ ℂ ∧ 𝐴 ∈ ℕ0 ) → ( - 1 ↑ ( 𝐴 + 1 ) ) = ( ( - 1 ↑ 𝐴 ) · - 1 ) ) |
| 85 |
82 83 84
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( - 1 ↑ ( 𝐴 + 1 ) ) = ( ( - 1 ↑ 𝐴 ) · - 1 ) ) |
| 86 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 87 |
10 86
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| 88 |
87 11
|
nnexpcld |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) |
| 89 |
88
|
nncnd |
⊢ ( 𝜑 → ( 𝑃 ↑ 𝐴 ) ∈ ℂ ) |
| 90 |
89
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 𝑃 ↑ 𝐴 ) ∈ ℂ ) |
| 91 |
90
|
sqsqrtd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ↑ 2 ) = ( 𝑃 ↑ 𝐴 ) ) |
| 92 |
91
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 𝑃 pCnt ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ↑ 2 ) ) = ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
| 93 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → 𝑃 ∈ ℙ ) |
| 94 |
|
nnq |
⊢ ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ → ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℚ ) |
| 95 |
94
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℚ ) |
| 96 |
|
nnne0 |
⊢ ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ → ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ≠ 0 ) |
| 97 |
96
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ≠ 0 ) |
| 98 |
|
2z |
⊢ 2 ∈ ℤ |
| 99 |
98
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → 2 ∈ ℤ ) |
| 100 |
|
pcexp |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℚ ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ≠ 0 ) ∧ 2 ∈ ℤ ) → ( 𝑃 pCnt ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ↑ 2 ) ) = ( 2 · ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) |
| 101 |
93 95 97 99 100
|
syl121anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 𝑃 pCnt ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ↑ 2 ) ) = ( 2 · ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) |
| 102 |
83
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 103 |
|
pcid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |
| 104 |
93 102 103
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |
| 105 |
92 101 104
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → 𝐴 = ( 2 · ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) |
| 106 |
105
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( - 1 ↑ 𝐴 ) = ( - 1 ↑ ( 2 · ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) ) |
| 107 |
82
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → - 1 ∈ ℂ ) |
| 108 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) |
| 109 |
93 108
|
pccld |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℕ0 ) |
| 110 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 111 |
110
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → 2 ∈ ℕ0 ) |
| 112 |
107 109 111
|
expmuld |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( - 1 ↑ ( 2 · ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) = ( ( - 1 ↑ 2 ) ↑ ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) ) |
| 113 |
|
neg1sqe1 |
⊢ ( - 1 ↑ 2 ) = 1 |
| 114 |
113
|
oveq1i |
⊢ ( ( - 1 ↑ 2 ) ↑ ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) = ( 1 ↑ ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) |
| 115 |
109
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℤ ) |
| 116 |
|
1exp |
⊢ ( ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℤ → ( 1 ↑ ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) = 1 ) |
| 117 |
115 116
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 1 ↑ ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) = 1 ) |
| 118 |
114 117
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( ( - 1 ↑ 2 ) ↑ ( 𝑃 pCnt ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ) ) = 1 ) |
| 119 |
106 112 118
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( - 1 ↑ 𝐴 ) = 1 ) |
| 120 |
119
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( ( - 1 ↑ 𝐴 ) · - 1 ) = ( 1 · - 1 ) ) |
| 121 |
82
|
mullidi |
⊢ ( 1 · - 1 ) = - 1 |
| 122 |
120 121
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( ( - 1 ↑ 𝐴 ) · - 1 ) = - 1 ) |
| 123 |
85 122
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( - 1 ↑ ( 𝐴 + 1 ) ) = - 1 ) |
| 124 |
123
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( - 1 ↑ ( 𝐴 + 1 ) ) = - 1 ) |
| 125 |
25
|
recnd |
⊢ ( 𝜑 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℂ ) |
| 126 |
125
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℂ ) |
| 127 |
126
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℂ ) |
| 128 |
127
|
negnegd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → - - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) |
| 129 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) |
| 130 |
129
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) |
| 131 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → 𝑋 ∈ 𝐷 ) |
| 132 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
| 133 |
4 1 5 18 132 8 24
|
dchrn0 |
⊢ ( 𝜑 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ↔ ( 𝐿 ‘ 𝑃 ) ∈ ( Unit ‘ 𝑍 ) ) ) |
| 134 |
133
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ↔ ( 𝐿 ‘ 𝑃 ) ∈ ( Unit ‘ 𝑍 ) ) ) |
| 135 |
134
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( 𝐿 ‘ 𝑃 ) ∈ ( Unit ‘ 𝑍 ) ) |
| 136 |
4 5 131 1 132 135
|
dchrabs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = 1 ) |
| 137 |
|
eqeq1 |
⊢ ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = 1 ↔ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) ) |
| 138 |
136 137
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) ) |
| 139 |
138
|
necon3ad |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 → ¬ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 140 |
130 139
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ¬ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) |
| 141 |
67
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℝ ) |
| 142 |
141
|
absord |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∨ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 143 |
142
|
ord |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( ¬ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 144 |
140 143
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) |
| 145 |
144 136
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = 1 ) |
| 146 |
145
|
negeqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → - - ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = - 1 ) |
| 147 |
128 146
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) = - 1 ) |
| 148 |
147
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) = ( - 1 ↑ ( 𝐴 + 1 ) ) ) |
| 149 |
124 148 147
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 0 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) |
| 150 |
81 149
|
pm2.61dane |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) |
| 151 |
150
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) = ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 152 |
71 74 151
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 1 · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ) |
| 153 |
72
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 0 · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) = 0 ) |
| 154 |
|
peano2nn0 |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℕ0 ) |
| 155 |
11 154
|
syl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℕ0 ) |
| 156 |
25 155
|
reexpcld |
⊢ ( 𝜑 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 157 |
156
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 158 |
157
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ∈ ℂ ) |
| 159 |
158
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ ) |
| 160 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → 1 ∈ ℝ ) |
| 161 |
157
|
leabsd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ≤ ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ) |
| 162 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 𝐴 + 1 ) ∈ ℕ0 ) |
| 163 |
126 162
|
absexpd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) = ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ↑ ( 𝐴 + 1 ) ) ) |
| 164 |
126
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ∈ ℝ ) |
| 165 |
126
|
absge0d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → 0 ≤ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 166 |
4 5 1 18 8 24
|
dchrabs2 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ≤ 1 ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ≤ 1 ) |
| 168 |
|
exple1 |
⊢ ( ( ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ∧ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ≤ 1 ) ∧ ( 𝐴 + 1 ) ∈ ℕ0 ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ↑ ( 𝐴 + 1 ) ) ≤ 1 ) |
| 169 |
164 165 167 162 168
|
syl31anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ↑ ( 𝐴 + 1 ) ) ≤ 1 ) |
| 170 |
163 169
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ≤ 1 ) |
| 171 |
157 159 160 161 170
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ≤ 1 ) |
| 172 |
|
subge0 |
⊢ ( ( 1 ∈ ℝ ∧ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ∈ ℝ ) → ( 0 ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ↔ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ≤ 1 ) ) |
| 173 |
66 157 172
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 0 ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ↔ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ≤ 1 ) ) |
| 174 |
171 173
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → 0 ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ) |
| 175 |
153 174
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 0 · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ) |
| 176 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) ∧ ¬ ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ ) → ( 0 · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ) |
| 177 |
63 65 152 176
|
ifbothda |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ) |
| 178 |
|
0re |
⊢ 0 ∈ ℝ |
| 179 |
66 178
|
ifcli |
⊢ if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ∈ ℝ |
| 180 |
179
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ∈ ℝ ) |
| 181 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ∈ ℝ ) → ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ ) |
| 182 |
66 157 181
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ ) |
| 183 |
67
|
leabsd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≤ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 184 |
67 164 160 183 167
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≤ 1 ) |
| 185 |
129
|
necomd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → 1 ≠ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) |
| 186 |
67 160 184 185
|
leneltd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) < 1 ) |
| 187 |
|
posdif |
⊢ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) < 1 ↔ 0 < ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) |
| 188 |
67 66 187
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) < 1 ↔ 0 < ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) |
| 189 |
186 188
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → 0 < ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 190 |
|
lemuldiv |
⊢ ( ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ∈ ℝ ∧ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ ∧ ( ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ∈ ℝ ∧ 0 < ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) → ( ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ↔ if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ ( ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) / ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) ) |
| 191 |
180 182 69 189 190
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) · ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ≤ ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ↔ if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ ( ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) / ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) ) |
| 192 |
177 191
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ ( ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) / ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) |
| 193 |
11
|
nn0zd |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 194 |
|
fzval3 |
⊢ ( 𝐴 ∈ ℤ → ( 0 ... 𝐴 ) = ( 0 ..^ ( 𝐴 + 1 ) ) ) |
| 195 |
193 194
|
syl |
⊢ ( 𝜑 → ( 0 ... 𝐴 ) = ( 0 ..^ ( 𝐴 + 1 ) ) ) |
| 196 |
195
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 0 ... 𝐴 ) = ( 0 ..^ ( 𝐴 + 1 ) ) ) |
| 197 |
196
|
sumeq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) = Σ 𝑖 ∈ ( 0 ..^ ( 𝐴 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 198 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 199 |
198
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → 0 ∈ ℕ0 ) |
| 200 |
155 37
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 202 |
126 129 199 201
|
geoserg |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → Σ 𝑖 ∈ ( 0 ..^ ( 𝐴 + 1 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) = ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 0 ) − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) / ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) |
| 203 |
126
|
exp0d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 0 ) = 1 ) |
| 204 |
203
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 0 ) − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) = ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) ) |
| 205 |
204
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 0 ) − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) / ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) = ( ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) / ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) |
| 206 |
197 202 205
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) = ( ( 1 − ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ ( 𝐴 + 1 ) ) ) / ( 1 − ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) ) |
| 207 |
192 206
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ≠ 1 ) → if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 208 |
61 207
|
pm2.61dane |
⊢ ( 𝜑 → if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 209 |
1 2 3 4 5 6 7
|
dchrisum0fval |
⊢ ( ( 𝑃 ↑ 𝐴 ) ∈ ℕ → ( 𝐹 ‘ ( 𝑃 ↑ 𝐴 ) ) = Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) |
| 210 |
88 209
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑃 ↑ 𝐴 ) ) = Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) |
| 211 |
|
2fveq3 |
⊢ ( 𝑘 = ( 𝑃 ↑ 𝑖 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) ) ) |
| 212 |
|
eqid |
⊢ ( 𝑏 ∈ ( 0 ... 𝐴 ) ↦ ( 𝑃 ↑ 𝑏 ) ) = ( 𝑏 ∈ ( 0 ... 𝐴 ) ↦ ( 𝑃 ↑ 𝑏 ) ) |
| 213 |
212
|
dvdsppwf1o |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑏 ∈ ( 0 ... 𝐴 ) ↦ ( 𝑃 ↑ 𝑏 ) ) : ( 0 ... 𝐴 ) –1-1-onto→ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } ) |
| 214 |
10 11 213
|
syl2anc |
⊢ ( 𝜑 → ( 𝑏 ∈ ( 0 ... 𝐴 ) ↦ ( 𝑃 ↑ 𝑏 ) ) : ( 0 ... 𝐴 ) –1-1-onto→ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } ) |
| 215 |
|
oveq2 |
⊢ ( 𝑏 = 𝑖 → ( 𝑃 ↑ 𝑏 ) = ( 𝑃 ↑ 𝑖 ) ) |
| 216 |
|
ovex |
⊢ ( 𝑃 ↑ 𝑏 ) ∈ V |
| 217 |
215 212 216
|
fvmpt3i |
⊢ ( 𝑖 ∈ ( 0 ... 𝐴 ) → ( ( 𝑏 ∈ ( 0 ... 𝐴 ) ↦ ( 𝑃 ↑ 𝑏 ) ) ‘ 𝑖 ) = ( 𝑃 ↑ 𝑖 ) ) |
| 218 |
217
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( ( 𝑏 ∈ ( 0 ... 𝐴 ) ↦ ( 𝑃 ↑ 𝑏 ) ) ‘ 𝑖 ) = ( 𝑃 ↑ 𝑖 ) ) |
| 219 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑋 : ( Base ‘ 𝑍 ) ⟶ ℝ ) |
| 220 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } → 𝑘 ∈ ℕ ) |
| 221 |
220
|
nnzd |
⊢ ( 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } → 𝑘 ∈ ℤ ) |
| 222 |
|
ffvelcdm |
⊢ ( ( 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ∧ 𝑘 ∈ ℤ ) → ( 𝐿 ‘ 𝑘 ) ∈ ( Base ‘ 𝑍 ) ) |
| 223 |
21 221 222
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝐿 ‘ 𝑘 ) ∈ ( Base ‘ 𝑍 ) ) |
| 224 |
219 223
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ∈ ℝ ) |
| 225 |
224
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ∈ ℂ ) |
| 226 |
211 16 214 218 225
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝑃 ↑ 𝐴 ) } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) = Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) ) ) |
| 227 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
| 228 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 229 |
228
|
subrgsubm |
⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 230 |
227 229
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ℤ ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 231 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑖 ∈ ℕ0 ) |
| 232 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑃 ∈ ℤ ) |
| 233 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
| 234 |
|
zringmpg |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) = ( mulGrp ‘ ℤring ) |
| 235 |
234
|
eqcomi |
⊢ ( mulGrp ‘ ℤring ) = ( ( mulGrp ‘ ℂfld ) ↾s ℤ ) |
| 236 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℤring ) ) = ( .g ‘ ( mulGrp ‘ ℤring ) ) |
| 237 |
233 235 236
|
submmulg |
⊢ ( ( ℤ ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ 𝑖 ∈ ℕ0 ∧ 𝑃 ∈ ℤ ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑃 ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) ) |
| 238 |
230 231 232 237
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑃 ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) ) |
| 239 |
87
|
nncnd |
⊢ ( 𝜑 → 𝑃 ∈ ℂ ) |
| 240 |
|
cnfldexp |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑃 ) = ( 𝑃 ↑ 𝑖 ) ) |
| 241 |
239 26 240
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑃 ) = ( 𝑃 ↑ 𝑖 ) ) |
| 242 |
238 241
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) = ( 𝑃 ↑ 𝑖 ) ) |
| 243 |
242
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝐿 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) ) = ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) ) |
| 244 |
1
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑍 ∈ CRing ) |
| 245 |
|
crngring |
⊢ ( 𝑍 ∈ CRing → 𝑍 ∈ Ring ) |
| 246 |
17 244 245
|
3syl |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 247 |
2
|
zrhrhm |
⊢ ( 𝑍 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑍 ) ) |
| 248 |
|
eqid |
⊢ ( mulGrp ‘ ℤring ) = ( mulGrp ‘ ℤring ) |
| 249 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
| 250 |
248 249
|
rhmmhm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑍 ) → 𝐿 ∈ ( ( mulGrp ‘ ℤring ) MndHom ( mulGrp ‘ 𝑍 ) ) ) |
| 251 |
246 247 250
|
3syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ( mulGrp ‘ ℤring ) MndHom ( mulGrp ‘ 𝑍 ) ) ) |
| 252 |
251
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝐿 ∈ ( ( mulGrp ‘ ℤring ) MndHom ( mulGrp ‘ 𝑍 ) ) ) |
| 253 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 254 |
248 253
|
mgpbas |
⊢ ℤ = ( Base ‘ ( mulGrp ‘ ℤring ) ) |
| 255 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑍 ) ) = ( .g ‘ ( mulGrp ‘ 𝑍 ) ) |
| 256 |
254 236 255
|
mhmmulg |
⊢ ( ( 𝐿 ∈ ( ( mulGrp ‘ ℤring ) MndHom ( mulGrp ‘ 𝑍 ) ) ∧ 𝑖 ∈ ℕ0 ∧ 𝑃 ∈ ℤ ) → ( 𝐿 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) |
| 257 |
252 231 232 256
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝐿 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ ℤring ) ) 𝑃 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) |
| 258 |
243 257
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) |
| 259 |
258
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) ) = ( 𝑋 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 260 |
4 1 5
|
dchrmhm |
⊢ 𝐷 ⊆ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) |
| 261 |
260 8
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
| 262 |
261
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ) |
| 263 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝐿 ‘ 𝑃 ) ∈ ( Base ‘ 𝑍 ) ) |
| 264 |
249 18
|
mgpbas |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) |
| 265 |
264 255 233
|
mhmmulg |
⊢ ( ( 𝑋 ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ ℂfld ) ) ∧ 𝑖 ∈ ℕ0 ∧ ( 𝐿 ‘ 𝑃 ) ∈ ( Base ‘ 𝑍 ) ) → ( 𝑋 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 266 |
262 231 263 265
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ‘ ( 𝑖 ( .g ‘ ( mulGrp ‘ 𝑍 ) ) ( 𝐿 ‘ 𝑃 ) ) ) = ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) ) |
| 267 |
|
cnfldexp |
⊢ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 268 |
125 26 267
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑖 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 269 |
259 266 268
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐴 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 270 |
269
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑃 ↑ 𝑖 ) ) ) = Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 271 |
210 226 270
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑃 ↑ 𝐴 ) ) = Σ 𝑖 ∈ ( 0 ... 𝐴 ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑃 ) ) ↑ 𝑖 ) ) |
| 272 |
208 271
|
breqtrrd |
⊢ ( 𝜑 → if ( ( √ ‘ ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ , 1 , 0 ) ≤ ( 𝐹 ‘ ( 𝑃 ↑ 𝐴 ) ) ) |