Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
rpvmasum2.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
5 |
|
rpvmasum2.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
6 |
|
rpvmasum2.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
7 |
|
dchrisum0f.f |
⊢ 𝐹 = ( 𝑏 ∈ ℕ ↦ Σ 𝑣 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝑏 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑣 ) ) ) |
8 |
|
dchrisum0f.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
9 |
|
dchrisum0fmul.a |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
10 |
|
dchrisum0fmul.b |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
11 |
|
dchrisum0fmul.m |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |
12 |
|
eqid |
⊢ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } = { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } |
13 |
|
eqid |
⊢ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } = { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } |
14 |
|
eqid |
⊢ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) } = { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) } |
15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } ) → 𝑋 ∈ 𝐷 ) |
16 |
|
elrabi |
⊢ ( 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } → 𝑗 ∈ ℕ ) |
17 |
16
|
nnzd |
⊢ ( 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } → 𝑗 ∈ ℤ ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } ) → 𝑗 ∈ ℤ ) |
19 |
4 1 5 2 15 18
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑗 ) ) ∈ ℂ ) |
20 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } ) → 𝑋 ∈ 𝐷 ) |
21 |
|
elrabi |
⊢ ( 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } → 𝑘 ∈ ℕ ) |
22 |
21
|
nnzd |
⊢ ( 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } → 𝑘 ∈ ℤ ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } ) → 𝑘 ∈ ℤ ) |
24 |
4 1 5 2 20 23
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ∈ ℂ ) |
25 |
17 22
|
anim12i |
⊢ ( ( 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } ) → ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) |
26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑋 ∈ 𝐷 ) |
27 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑗 ∈ ℤ ) |
28 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → 𝑘 ∈ ℤ ) |
29 |
4 1 5 2 26 27 28
|
dchrzrhmul |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑗 · 𝑘 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑗 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ) |
30 |
29
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℤ ∧ 𝑘 ∈ ℤ ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑗 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑗 · 𝑘 ) ) ) ) |
31 |
25 30
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } ∧ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑗 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑗 · 𝑘 ) ) ) ) |
32 |
|
2fveq3 |
⊢ ( 𝑖 = ( 𝑗 · 𝑘 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑗 · 𝑘 ) ) ) ) |
33 |
9 10 11 12 13 14 19 24 31 32
|
fsumdvdsmul |
⊢ ( 𝜑 → ( Σ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑗 ) ) · Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) = Σ 𝑖 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) } ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) |
34 |
1 2 3 4 5 6 7
|
dchrisum0fval |
⊢ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐴 ) = Σ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑗 ) ) ) |
35 |
9 34
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = Σ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑗 ) ) ) |
36 |
1 2 3 4 5 6 7
|
dchrisum0fval |
⊢ ( 𝐵 ∈ ℕ → ( 𝐹 ‘ 𝐵 ) = Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) |
37 |
10 36
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) |
38 |
35 37
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) · ( 𝐹 ‘ 𝐵 ) ) = ( Σ 𝑗 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐴 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑗 ) ) · Σ 𝑘 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ 𝐵 } ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ) |
39 |
9 10
|
nnmulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℕ ) |
40 |
1 2 3 4 5 6 7
|
dchrisum0fval |
⊢ ( ( 𝐴 · 𝐵 ) ∈ ℕ → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = Σ 𝑖 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) } ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = Σ 𝑖 ∈ { 𝑞 ∈ ℕ ∣ 𝑞 ∥ ( 𝐴 · 𝐵 ) } ( 𝑋 ‘ ( 𝐿 ‘ 𝑖 ) ) ) |
42 |
33 38 41
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) · ( 𝐹 ‘ 𝐵 ) ) ) |