Metamath Proof Explorer


Theorem dchrisum0lem1a

Description: Lemma for dchrisum0lem1 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Assertion dchrisum0lem1a ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 ≤ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ∧ ( ⌊ ‘ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) ∈ ( ℤ ‘ ( ⌊ ‘ 𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 elfznn ( 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) → 𝐷 ∈ ℕ )
2 1 adantl ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐷 ∈ ℕ )
3 2 nnred ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐷 ∈ ℝ )
4 simpr ( ( 𝜑𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ+ )
5 4 rpregt0d ( ( 𝜑𝑋 ∈ ℝ+ ) → ( 𝑋 ∈ ℝ ∧ 0 < 𝑋 ) )
6 5 adantr ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 ∈ ℝ ∧ 0 < 𝑋 ) )
7 6 simpld ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝑋 ∈ ℝ )
8 4 adantr ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝑋 ∈ ℝ+ )
9 8 rpge0d ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 0 ≤ 𝑋 )
10 4 rpred ( ( 𝜑𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ )
11 fznnfl ( 𝑋 ∈ ℝ → ( 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ↔ ( 𝐷 ∈ ℕ ∧ 𝐷𝑋 ) ) )
12 10 11 syl ( ( 𝜑𝑋 ∈ ℝ+ ) → ( 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ↔ ( 𝐷 ∈ ℕ ∧ 𝐷𝑋 ) ) )
13 12 simplbda ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐷𝑋 )
14 3 7 7 9 13 lemul2ad ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 · 𝐷 ) ≤ ( 𝑋 · 𝑋 ) )
15 rpcn ( 𝑋 ∈ ℝ+𝑋 ∈ ℂ )
16 15 adantl ( ( 𝜑𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℂ )
17 16 sqvald ( ( 𝜑𝑋 ∈ ℝ+ ) → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) )
18 17 adantr ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 ↑ 2 ) = ( 𝑋 · 𝑋 ) )
19 14 18 breqtrrd ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 · 𝐷 ) ≤ ( 𝑋 ↑ 2 ) )
20 2z 2 ∈ ℤ
21 rpexpcl ( ( 𝑋 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝑋 ↑ 2 ) ∈ ℝ+ )
22 4 20 21 sylancl ( ( 𝜑𝑋 ∈ ℝ+ ) → ( 𝑋 ↑ 2 ) ∈ ℝ+ )
23 22 rpred ( ( 𝜑𝑋 ∈ ℝ+ ) → ( 𝑋 ↑ 2 ) ∈ ℝ )
24 23 adantr ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 ↑ 2 ) ∈ ℝ )
25 2 nnrpd ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐷 ∈ ℝ+ )
26 7 24 25 lemuldivd ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( ( 𝑋 · 𝐷 ) ≤ ( 𝑋 ↑ 2 ) ↔ 𝑋 ≤ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) )
27 19 26 mpbid ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝑋 ≤ ( ( 𝑋 ↑ 2 ) / 𝐷 ) )
28 nndivre ( ( ( 𝑋 ↑ 2 ) ∈ ℝ ∧ 𝐷 ∈ ℕ ) → ( ( 𝑋 ↑ 2 ) / 𝐷 ) ∈ ℝ )
29 23 1 28 syl2an ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( ( 𝑋 ↑ 2 ) / 𝐷 ) ∈ ℝ )
30 flword2 ( ( 𝑋 ∈ ℝ ∧ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ∈ ℝ ∧ 𝑋 ≤ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) → ( ⌊ ‘ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) ∈ ( ℤ ‘ ( ⌊ ‘ 𝑋 ) ) )
31 7 29 27 30 syl3anc ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( ⌊ ‘ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) ∈ ( ℤ ‘ ( ⌊ ‘ 𝑋 ) ) )
32 27 31 jca ( ( ( 𝜑𝑋 ∈ ℝ+ ) ∧ 𝐷 ∈ ( 1 ... ( ⌊ ‘ 𝑋 ) ) ) → ( 𝑋 ≤ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ∧ ( ⌊ ‘ ( ( 𝑋 ↑ 2 ) / 𝐷 ) ) ∈ ( ℤ ‘ ( ⌊ ‘ 𝑋 ) ) ) )