| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum2.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum2.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum2.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
rpvmasum2.w |
⊢ 𝑊 = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } |
| 8 |
|
dchrisum0.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) |
| 9 |
|
dchrisum0lem1.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) |
| 10 |
|
dchrisum0.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 11 |
|
dchrisum0.s |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑆 ) |
| 12 |
|
dchrisum0.1 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑦 ) ) ) |
| 13 |
|
dchrisum0lem2.h |
⊢ 𝐻 = ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( 1 / ( √ ‘ 𝑑 ) ) − ( 2 · ( √ ‘ 𝑦 ) ) ) ) |
| 14 |
|
dchrisum0lem2.u |
⊢ ( 𝜑 → 𝐻 ⇝𝑟 𝑈 ) |
| 15 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 16 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝜑 ) |
| 17 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑚 ∈ ℕ ) |
| 18 |
7
|
ssrab3 |
⊢ 𝑊 ⊆ ( 𝐷 ∖ { 1 } ) |
| 19 |
18 8
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐷 ∖ { 1 } ) ) |
| 20 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
| 22 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
| 24 |
4 1 5 2 21 23
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
| 25 |
|
nnrp |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ+ ) |
| 26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
| 27 |
26
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( √ ‘ 𝑚 ) ∈ ℝ+ ) |
| 28 |
27
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( √ ‘ 𝑚 ) ∈ ℂ ) |
| 29 |
27
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( √ ‘ 𝑚 ) ≠ 0 ) |
| 30 |
24 28 29
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
| 31 |
16 17 30
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
| 32 |
15 31
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
| 33 |
|
rlimcl |
⊢ ( 𝐻 ⇝𝑟 𝑈 → 𝑈 ∈ ℂ ) |
| 34 |
14 33
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑈 ∈ ℂ ) |
| 36 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 37 |
|
0lt1 |
⊢ 0 < 1 |
| 38 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 39 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 40 |
|
xrltletr |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 0 < 1 ∧ 1 ≤ 𝑤 ) → 0 < 𝑤 ) ) |
| 41 |
38 39 40
|
ixxss1 |
⊢ ( ( 0 ∈ ℝ* ∧ 0 < 1 ) → ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ ) ) |
| 42 |
36 37 41
|
mp2an |
⊢ ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ ) |
| 43 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 44 |
42 43
|
sseqtri |
⊢ ( 1 [,) +∞ ) ⊆ ℝ+ |
| 45 |
|
resmpt |
⊢ ( ( 1 [,) +∞ ) ⊆ ℝ+ → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ↾ ( 1 [,) +∞ ) ) = ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ) |
| 46 |
44 45
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ↾ ( 1 [,) +∞ ) ) = ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
| 47 |
44
|
sseli |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ+ ) |
| 48 |
17
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑚 ∈ ℕ ) |
| 49 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑚 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑎 = 𝑚 → ( √ ‘ 𝑎 ) = ( √ ‘ 𝑚 ) ) |
| 51 |
49 50
|
oveq12d |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
| 52 |
|
ovex |
⊢ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ∈ V |
| 53 |
51 9 52
|
fvmpt3i |
⊢ ( 𝑚 ∈ ℕ → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
| 54 |
48 53
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
| 55 |
47 54
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
| 56 |
|
1re |
⊢ 1 ∈ ℝ |
| 57 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ) |
| 58 |
56 57
|
ax-mp |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) |
| 59 |
|
flge1nn |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
| 60 |
58 59
|
sylbi |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
| 62 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 63 |
61 62
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 64 |
47 31
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
| 65 |
55 63 64
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 66 |
65
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) = ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) |
| 67 |
46 66
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ↾ ( 1 [,) +∞ ) ) = ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) |
| 68 |
|
fveq2 |
⊢ ( 𝑚 = ( ⌊ ‘ 𝑥 ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑚 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 69 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
| 71 |
44 70
|
sstrid |
⊢ ( 𝜑 → ( 1 [,) +∞ ) ⊆ ℝ ) |
| 72 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 73 |
51
|
cbvmptv |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
| 74 |
9 73
|
eqtri |
⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
| 75 |
30 74
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) |
| 76 |
75
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 77 |
62 72 76
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 78 |
77
|
feqmptd |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) = ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , 𝐹 ) ‘ 𝑚 ) ) ) |
| 79 |
78 11
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( seq 1 ( + , 𝐹 ) ‘ 𝑚 ) ) ⇝ 𝑆 ) |
| 80 |
77
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℂ ) |
| 81 |
58
|
simprbi |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑥 ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
| 83 |
62 68 71 72 79 80 82
|
climrlim2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ⇝𝑟 𝑆 ) |
| 84 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ⇝𝑟 𝑆 → ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 85 |
83 84
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 86 |
67 85
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ↾ ( 1 [,) +∞ ) ) ∈ 𝑂(1) ) |
| 87 |
32
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) : ℝ+ ⟶ ℂ ) |
| 88 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 89 |
87 70 88
|
o1resb |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ↾ ( 1 [,) +∞ ) ) ∈ 𝑂(1) ) ) |
| 90 |
86 89
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ∈ 𝑂(1) ) |
| 91 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ 𝑈 ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ 𝑈 ) ∈ 𝑂(1) ) |
| 92 |
69 34 91
|
sylancr |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ 𝑈 ) ∈ 𝑂(1) ) |
| 93 |
32 35 90 92
|
o1mul2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) ∈ 𝑂(1) ) |
| 94 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 95 |
|
2z |
⊢ 2 ∈ ℤ |
| 96 |
|
rpexpcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
| 97 |
94 95 96
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
| 98 |
17
|
nnrpd |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑚 ∈ ℝ+ ) |
| 99 |
|
rpdivcl |
⊢ ( ( ( 𝑥 ↑ 2 ) ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( ( 𝑥 ↑ 2 ) / 𝑚 ) ∈ ℝ+ ) |
| 100 |
97 98 99
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 ↑ 2 ) / 𝑚 ) ∈ ℝ+ ) |
| 101 |
13
|
divsqrsumf |
⊢ 𝐻 : ℝ+ ⟶ ℝ |
| 102 |
101
|
ffvelcdmi |
⊢ ( ( ( 𝑥 ↑ 2 ) / 𝑚 ) ∈ ℝ+ → ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ∈ ℝ ) |
| 103 |
100 102
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ∈ ℝ ) |
| 104 |
103
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ∈ ℂ ) |
| 105 |
31 104
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ∈ ℂ ) |
| 106 |
15 105
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ∈ ℂ ) |
| 107 |
32 35
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ∈ ℂ ) |
| 108 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐻 ⇝𝑟 𝑈 ) |
| 109 |
108 33
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑈 ∈ ℂ ) |
| 110 |
31 109
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ∈ ℂ ) |
| 111 |
15 105 110
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) − ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) ) |
| 112 |
31 104 109
|
subdid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) = ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) − ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) ) |
| 113 |
112
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) − ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) ) |
| 114 |
15 35 31
|
fsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) |
| 115 |
114
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) ) |
| 116 |
111 113 115
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) ) |
| 117 |
116
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) ) ) |
| 118 |
104 109
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ∈ ℂ ) |
| 119 |
31 118
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ∈ ℂ ) |
| 120 |
15 119
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ∈ ℂ ) |
| 121 |
120
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ∈ ℝ ) |
| 122 |
119
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ∈ ℝ ) |
| 123 |
15 122
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ∈ ℝ ) |
| 124 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℝ ) |
| 125 |
15 119
|
fsumabs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ≤ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ) |
| 126 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 127 |
126
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 128 |
127
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 129 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 130 |
128 129
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 131 |
130 94
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 132 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 133 |
132
|
rprecred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑥 ) ∈ ℝ ) |
| 134 |
31
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 135 |
98
|
rpsqrtcld |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → ( √ ‘ 𝑚 ) ∈ ℝ+ ) |
| 136 |
135
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ 𝑚 ) ∈ ℝ+ ) |
| 137 |
136
|
rprecred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( √ ‘ 𝑚 ) ) ∈ ℝ ) |
| 138 |
118
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ∈ ℝ ) |
| 139 |
136 132
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( √ ‘ 𝑚 ) / 𝑥 ) ∈ ℝ+ ) |
| 140 |
69 139
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( √ ‘ 𝑚 ) / 𝑥 ) ∈ ℝ ) |
| 141 |
31
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ) |
| 142 |
118
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) |
| 143 |
16 17 24
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
| 144 |
136
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ 𝑚 ) ∈ ℂ ) |
| 145 |
136
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ 𝑚 ) ≠ 0 ) |
| 146 |
143 144 145
|
absdivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) = ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) / ( abs ‘ ( √ ‘ 𝑚 ) ) ) ) |
| 147 |
136
|
rprege0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( √ ‘ 𝑚 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑚 ) ) ) |
| 148 |
|
absid |
⊢ ( ( ( √ ‘ 𝑚 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑚 ) ) → ( abs ‘ ( √ ‘ 𝑚 ) ) = ( √ ‘ 𝑚 ) ) |
| 149 |
147 148
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( √ ‘ 𝑚 ) ) = ( √ ‘ 𝑚 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) / ( abs ‘ ( √ ‘ 𝑚 ) ) ) = ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) / ( √ ‘ 𝑚 ) ) ) |
| 151 |
146 150
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) = ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) / ( √ ‘ 𝑚 ) ) ) |
| 152 |
143
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 153 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
| 154 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 155 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑋 ∈ 𝐷 ) |
| 156 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 157 |
1 154 2
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) ) |
| 158 |
|
fof |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
| 159 |
156 157 158
|
3syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
| 160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
| 161 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑚 ∈ ℤ ) |
| 162 |
|
ffvelcdm |
⊢ ( ( 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ∧ 𝑚 ∈ ℤ ) → ( 𝐿 ‘ 𝑚 ) ∈ ( Base ‘ 𝑍 ) ) |
| 163 |
160 161 162
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐿 ‘ 𝑚 ) ∈ ( Base ‘ 𝑍 ) ) |
| 164 |
4 5 1 154 155 163
|
dchrabs2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ≤ 1 ) |
| 165 |
152 153 136 164
|
lediv1dd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) / ( √ ‘ 𝑚 ) ) ≤ ( 1 / ( √ ‘ 𝑚 ) ) ) |
| 166 |
151 165
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ≤ ( 1 / ( √ ‘ 𝑚 ) ) ) |
| 167 |
13 108
|
divsqrtsum2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ∈ ℝ+ ) → ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ≤ ( 1 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) |
| 168 |
100 167
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ≤ ( 1 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) |
| 169 |
97
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑥 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 ↑ 2 ) ) ) |
| 170 |
|
sqrtdiv |
⊢ ( ( ( ( 𝑥 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 ↑ 2 ) ) ∧ 𝑚 ∈ ℝ+ ) → ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) = ( ( √ ‘ ( 𝑥 ↑ 2 ) ) / ( √ ‘ 𝑚 ) ) ) |
| 171 |
169 98 170
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) = ( ( √ ‘ ( 𝑥 ↑ 2 ) ) / ( √ ‘ 𝑚 ) ) ) |
| 172 |
126
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 173 |
|
sqrtsq |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( √ ‘ ( 𝑥 ↑ 2 ) ) = 𝑥 ) |
| 174 |
172 173
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ ( 𝑥 ↑ 2 ) ) = 𝑥 ) |
| 175 |
174
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( √ ‘ ( 𝑥 ↑ 2 ) ) / ( √ ‘ 𝑚 ) ) = ( 𝑥 / ( √ ‘ 𝑚 ) ) ) |
| 176 |
171 175
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) = ( 𝑥 / ( √ ‘ 𝑚 ) ) ) |
| 177 |
176
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) = ( 1 / ( 𝑥 / ( √ ‘ 𝑚 ) ) ) ) |
| 178 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 179 |
178
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 180 |
136
|
rpcnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( √ ‘ 𝑚 ) ∈ ℂ ∧ ( √ ‘ 𝑚 ) ≠ 0 ) ) |
| 181 |
|
recdiv |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( ( √ ‘ 𝑚 ) ∈ ℂ ∧ ( √ ‘ 𝑚 ) ≠ 0 ) ) → ( 1 / ( 𝑥 / ( √ ‘ 𝑚 ) ) ) = ( ( √ ‘ 𝑚 ) / 𝑥 ) ) |
| 182 |
179 180 181
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( 𝑥 / ( √ ‘ 𝑚 ) ) ) = ( ( √ ‘ 𝑚 ) / 𝑥 ) ) |
| 183 |
177 182
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) = ( ( √ ‘ 𝑚 ) / 𝑥 ) ) |
| 184 |
168 183
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ≤ ( ( √ ‘ 𝑚 ) / 𝑥 ) ) |
| 185 |
134 137 138 140 141 142 166 184
|
lemul12ad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) · ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ≤ ( ( 1 / ( √ ‘ 𝑚 ) ) · ( ( √ ‘ 𝑚 ) / 𝑥 ) ) ) |
| 186 |
31 118
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) = ( ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) · ( abs ‘ ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ) |
| 187 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℂ ) |
| 188 |
|
dmdcan |
⊢ ( ( ( ( √ ‘ 𝑚 ) ∈ ℂ ∧ ( √ ‘ 𝑚 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ 1 ∈ ℂ ) → ( ( ( √ ‘ 𝑚 ) / 𝑥 ) · ( 1 / ( √ ‘ 𝑚 ) ) ) = ( 1 / 𝑥 ) ) |
| 189 |
180 179 187 188
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( √ ‘ 𝑚 ) / 𝑥 ) · ( 1 / ( √ ‘ 𝑚 ) ) ) = ( 1 / 𝑥 ) ) |
| 190 |
139
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( √ ‘ 𝑚 ) / 𝑥 ) ∈ ℂ ) |
| 191 |
|
reccl |
⊢ ( ( ( √ ‘ 𝑚 ) ∈ ℂ ∧ ( √ ‘ 𝑚 ) ≠ 0 ) → ( 1 / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
| 192 |
180 191
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
| 193 |
190 192
|
mulcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( √ ‘ 𝑚 ) / 𝑥 ) · ( 1 / ( √ ‘ 𝑚 ) ) ) = ( ( 1 / ( √ ‘ 𝑚 ) ) · ( ( √ ‘ 𝑚 ) / 𝑥 ) ) ) |
| 194 |
189 193
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑥 ) = ( ( 1 / ( √ ‘ 𝑚 ) ) · ( ( √ ‘ 𝑚 ) / 𝑥 ) ) ) |
| 195 |
185 186 194
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ≤ ( 1 / 𝑥 ) ) |
| 196 |
15 122 133 195
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ≤ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) ) |
| 197 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 198 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 199 |
127 197 198
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 200 |
199
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 1 / 𝑥 ) ) = ( ( ⌊ ‘ 𝑥 ) · ( 1 / 𝑥 ) ) ) |
| 201 |
94
|
rpreccld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 202 |
201
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 203 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ ( 1 / 𝑥 ) ∈ ℂ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 1 / 𝑥 ) ) ) |
| 204 |
15 202 203
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 1 / 𝑥 ) ) ) |
| 205 |
130
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ∈ ℂ ) |
| 206 |
178
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 207 |
206
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 208 |
206
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 209 |
205 207 208
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) = ( ( ⌊ ‘ 𝑥 ) · ( 1 / 𝑥 ) ) ) |
| 210 |
200 204 209
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) = ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ) |
| 211 |
196 210
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ≤ ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ) |
| 212 |
|
flle |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
| 213 |
128 212
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
| 214 |
128
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 215 |
214
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 · 1 ) = 𝑥 ) |
| 216 |
213 215
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ≤ ( 𝑥 · 1 ) ) |
| 217 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 218 |
217
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 219 |
|
ledivmul |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ≤ 1 ↔ ( ⌊ ‘ 𝑥 ) ≤ ( 𝑥 · 1 ) ) ) |
| 220 |
130 124 218 219
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ≤ 1 ↔ ( ⌊ ‘ 𝑥 ) ≤ ( 𝑥 · 1 ) ) ) |
| 221 |
216 220
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ≤ 1 ) |
| 222 |
123 131 124 211 221
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ≤ 1 ) |
| 223 |
121 123 124 125 222
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ≤ 1 ) |
| 224 |
223
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ≤ 1 ) |
| 225 |
70 120 88 88 224
|
elo1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) − 𝑈 ) ) ) ∈ 𝑂(1) ) |
| 226 |
117 225
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) ) ∈ 𝑂(1) ) |
| 227 |
106 107 226
|
o1dif |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · 𝑈 ) ) ∈ 𝑂(1) ) ) |
| 228 |
93 227
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) · ( 𝐻 ‘ ( ( 𝑥 ↑ 2 ) / 𝑚 ) ) ) ) ∈ 𝑂(1) ) |